AD-A202 050

£ FILE COPY

NPS52-89-004

NAVAL POSTGRADUATE SCHOOL

Monterey, California

AH

MEANINGFUL REAL-TIME GRAPHICS WORKSTATION PERFORMANCE
MEASUREMENTS

MARK A. FICHTEN
DAVID H. JENNINGS
MICHAEL J. ZYDA

NOVEMBER 1988 ﬁ

Approved for public release: distribution unlimited.

Prepared for: !17
US Army Combatt Developments Experimentation Center

- 89 1 09 '158 :

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research conducted for the United States
Army Combat Developments Experimentation Center, the Naval Ocean Systems Center,
and the Naval Underwater Systems Center. The work was funded by the Naval Postgradu-
ate School and the United States Army Combat Developments Experimentation Center .

Reproduction of all or part of this report is authorized.

This report was prepared by:
MICHAEL J. ZYDA\
Associate Professor
of Computer Science
Reviewed by: Released by:

bt A Lt T Mo

ROBERT B. MCGHEE KNEALW

Chairman Dean of Information
Department of Computer Science and Policy Science

UNCLASSIFIED
] IFICATION OF THIS PA

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS
UNCLASSIFIED
[2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
N Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited.
"2 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
NPS52-89-004
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
NAVAL POSTGRADUATE SCHOOL (if applicable) US Army Combat Developments Experimentation
Center.
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
MONTEREY, CA 93943 Fort Ord, CA 93941
8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) 02MN, Direct Funds and ATEC 44-87,
NAVAL POSTGRADUATE SCHOOL Fort Drd. CA. 93941
8¢. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
MONTEREY, CA 93943 ELEMENT NO. | NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
MEANINGFUL REAL-TIME GRAPHICS WORKSTATION PERFORMANCE MEASUREMENTS

12. PERSONAL AUTHOR(S)

MARK A. DAVID H., JENNINGS, MICHAE Z
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
SUMMARY FROM- TO 1 L d32

16. SUPPLEMENTARY NOTATION [77 - ‘
(; 77 /’(.Jf,..w".’ ATy g e
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP 3D Visual simulation systems, graphics workstation

performance measurements.

i

19. ABSTRAC)’ {Continue on reverse if necessary and identify by block number)

~We présent how graphics workstation performance is currently measured and how performance
should be measured in the future. Four levels of graphics system performance measurements
are low-level primitives (points and Lines), pictures (collections of points and lines),
systems (collections of pictures), and applications (collections of systems). The different
techniques for measuring performance vary widely depending on the hardware manufacturer,

the software programmer, or the article author. This paperdiscusses performance.
measurements of real-time graphics application with emphasis on exptessing the measurements -

in common terms. . 7 Y L S TF J
’ YR T ko c? q‘;// . //,}..»q/ .
LD i n ! "? . - - i \ g
/‘ 2 / 1 ~/‘| v /,,7.71,({ - S/ : J,} , (-& 2 /v
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 3 ABSTRACT SECURITY CLASSIFICATION -
A uncuassirenunumren [same as ReT. [o1ic users | UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | c2¢c. OFFICE SYMBOL
Michael J. Zyda (408) 646~2305
DO FORM 1473, 8a MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete 2 U5 Government Printing OMfies: 1530—000-24.
UNCLASSIFIED

Meaningful Real-Time Graphics Workstation Performance Measurements’

h _ Mark A. Fichten, David H. Jennings and Michael J. Zyda®
Naval Postgraduate School
Code 52, Dept. of Computer Science,
Monterey, California 93943-5100

ABSTRACT

We present how graphics workstation performance is currently
measured and how performance should be measured in the
future. Four levels of graphics system performance measure-
ments are low-level primitives (points and lines), pictures
(collections of points and lines), systems (collections of pic-
tures), and applications (collections of systems). The different
techniques for measuring performance vary widely depending on
the hardware manufacturer, the software programmer, or the
article author. This paper discusses performance measure-
ments of a real-time graphics application with emphasis on

expressing the measurements in common terms.
1 Accession For
NTIS GRA&I

_ DTIC T4B O
< - Unannounced a
T Justifleation |
\t: By
|_Distributien/

Availability Codes
'*Whﬁail and/or 7

Dist Special

‘\'\J |

IThis work was supported by the US Army Combat Developments Experimentation Center, Fort
Ord, California and the Naval Postgraduate School's Direct Funding Program. This work was generat-
ed from Mark A. Fichten’s and David H. Jennings’ joint Masters Thesis.

W V"

* Contact author.

o AN

E—v'r. ”
i

TABLE OF CONTENTS
GRAPHICS SYSTEMS OVERVIEW cesesesssats s sesssssassssasssasnn 1
A. INTRODUCTION...... 1
B. HARDWARE SPECIFICATIONS AND PERFORMANCE
ESTIMATEScocouvuennnn w2
SIMULATOR DEVELOPMENT AND PERFORMANCE HISTORY 4
A. FOGM MISSILE SIMULATOR . . 4
B. VEH VEHICLE SIMULATOR.......... 5
C. FOGM/VEH NETWORKING SIMULATORccococenerrrinenssarensaanenns 5
D. VEH II VEHICLE SIMULATOR cerersaainenenssenes 5
E. FOGM, VEH, AND VEH I PERFORMANCE HISTORY 6
THE MOVING PLATFORM SIMULATOR (MPS) DESCRIPTION............ 8
OPERATING AREAcciiiiniiniisissinisissssissmssssisisessssssasssssesssssssssssons 9
A. FORT HUNTER-LIGGETT DATABASE rereessssnsnes 9
B. SELECTION METHODOLOGY. . 10
C. GLOBAL COLOR SCHEMEccccoenenunnne .. 10
GRAPHICS DISPLAY SPECIFICSccccvnunnensrmnsnsnaseresesenssenessneses .13
A. PICTURE COMPLEXITY ...cocecvrnininisnsosnsssescsssssssssssssssssssnsssnsssssassases 13
B. INCORPORATED GRAPHICS TECHNIQUES............ccoeeuruinraraenes 17
1. Double buffering.............c.c.... reressreesesneans 17
2 Z-buffcring.............................' ... 17
3. RGB COlOrcoeririiiiiririisininnsnsiiissssssssnsnssessssssssssesssassesenes 19
4 Perspective World Views........cccoceemnnncniscsscssssinnisnnssssesesacns 20
C. INCORPORATED MODEL TECHNIQUES.cccoovuinrerivirsrenns 21
iv

N

3
v s
t Y

TEER T T L

-

1. Platform Attitude Update...........cocvciviriininccneenernnssasssssssssssess 21

2. Target Selection and Lockovccerennccnerncnersensssences 22

3 Missile Tracking Update........... . w23

4, Indicator Displays... thoreenssenensssansestanassnses 25

5. Collision Detection weerssnntrsennarenes 28

D. LIGHTING AND GOURAUD SHADING........ccecerermneresinisasorcacasnie 28
1. Light Intensity, Location, COlorc.cueeviienscsncncssisnsnenes 28

2 Platform Lighting..........cccconinnniinnsnnnnieisinnsesssssssssasssossonsones 33

3. Terrain Lighting........ccccocveercnruenns . . .35

4 Lighting SUMMATYcccocviinrninnnnnnsininsssiinisiisiensiaes 36

E. TERRAIN DISPLAYcovutimeineirirnnesisens 36
1. Data SIUCKULEcociiiiiieinnrsissesssnsrssasassssssscssesssnssssaesesssnsssssas 36

2, Display Algorithm ...t 38
NETWORKING CAPABILITYccorserirnsernsssusrsnsnsssssrssssssossassssssasssasessssaas 50
A. OVERVIEWccvmiiririnimisnnnssssnmsssssssssisssssissssssssssssssssassssssssssassssssss 50
B. MESSAGES VERSUS PACKETSccccvunninirirnnnsnonssisisesssssescsssans 50
C. MESSAGES........cocimnmnirininninnasnisssississssissisisssssassssssssssississsssssss 51
1 Generation Methodologyccviniiniiinencncnnnsennnaiisnsnanes 51

2 TYPES uuiuriiriristeinreneiassisnssesassisssnssisissssassessasssesrsssssssssnsasnsssssns 51

D. PACKETS.ciiininninininisntsnssssssssssssssssssssssssssssesssssesssesessaesesssssesssens 53
1 FOMAL.......ccoinrinntiitiiencssicnnisieesseisnssssssssessssassssenes 53
a. Header ...t 54
B BOY oo 54
2. EXBMPIES......ccoeriniieruninesosiesassessisassisssassssessssssssssessasssssassessoses 55
E. SHARED MEMORYcoiviiniiiiissesnsssensissseisssssssssssssssssnsss 57
NETWORK INITIALIZATION..........ccecosueninirmsuensrnsssssisenssisiscsesesens 58

v

E,!..v,, T

G. RECEIVE PROCESScccummmmmnninnninnsnnsssansessnsesssnssassessassssssssssnsses 59
VI. PERFORMANCE EVALUATION OF MPS............... 61
A. BENCHMARK PERFORMANCE . 62
VII. SYSTEM EVALUATION OF MPS 64
A. SYSTEM LIMITATIONS 64
1. Networking ... 64
2. Collision Detection 64
3. Terrain Display eterssanerasnessssstasssnsssentasans 64
B FUTURE CAPABILITIES...... 68
1. Additional Platform TYPeS.......cccecerinviccsansinssssnsaessasassssasssses 68
2. Enhanced Lighting and Shading............cocouevesesenscsecsnnenne. 68
3. Realistic Platform Dynamics .“ crresseressentsnsasasssasanes 69
4, Intelligent Platforms evesresnssssessesnesnsesssnnssnes 69
5. Dynamic Operating Area.............. 70
6. Use of Defense Mapping Agency (DMA) Type II Digital
Terrain Elevation Data (DTED)......cocccvereecsnnencnnreserssssonsssssssens 70
C. FUTURE MACHINESccocevenuninissninessiassssnsssssssssisssasssssssssasasasass 70
1. SGI IRIS 4D/70GTX70
2, SGI IRIS 4D/240GTXcceirirerencnsrsassssssssssssssssesesesesasssassnsans 71
IX. CONCLUSIONSccccovvuusnsunrersrsssncassessaosns 72
APPENDIX A USER INTERFAGCE...........ccocvennnrrininnseninnsesesssnssnnsesssssssssssssssassasens 74
APPENDIX B MODULE/FILE ORGANIZATION..........ccooverusunrnrsasasasssessassasaasananas 89
APPENDIX C MAKEFILE FOR THE MOVING PLATFORM SIMULATOR....... 97
APPENDIX D PROCEDURE FOR ADDING ADDITIONAL PLATFORMS
TO MPS oo eeeeveemsessessemsessamsssessssssssmssssssssssssassssssssssssisssssnsnsssssss 108 -
APPENDIX E TERRAIN DISPLAY DETALLSc.ccococviimimuunnnensssnsssssessssasasans 111

- —— - e e

S
E .
5 LIST OF REFERENCES.......ooovoesreseessssssssssmesssssssssssssesssssssnsees coeesroseseneessens 125
h INITIAL DISTRIBUTION LIST . 126
) {

TABLE 1.1
TABLE 2.1
TABLE 2.2

TABLE 2.3

TABLE 4.1
TABLE 5.1
TABLE 5.2
TABLE 6.1
TABLE 7.1
TABLEE.1
TABLEE.2

TABLEE.3
TABLE E4

TABLEE.5
TABLEE.6

TABLEE.7
TABLEE.8

LIST OF TABLES

MANUFACTURERS’ SPECIFICATIONS ...

ONE VEHICLE ON TERRAIN (FRAMES / SECOND)..........

NINE VEHICLES ON TERRAIN IN VIEW (FRAMES /
SECOND).......cocecvicrnsesrersaseesassnses

NINE VEHICLES ON TERRAIN, NONE IN VIEW
(FRAMES / SECOND) “

..................

VEGETATION CODES FOR DATABASE...........cccocoreuinnns

LOOKING NORTH OR SOUTH

VERTEX COORDINATES FOR FILLING HOLES

LOOKING NORTH........cconunininimnniisneisssesssssesssissssssssssssssonsase

LOOKING EAST OR WESTccovnnireniinrninsnsssnsssassssssans
PACKET BODY DEFINITIONS..........ccccoevrmunnnsesnssesesssnencsens
MPS PERFORMANCE MEASUREMENTSccccccvusuienniens
VERTEX COORDINATES LOOKING NORTH.........c.ccoereunee

VERTEX COORDINATES LOOKING SOUTH.

VERTEX COORDINATES FOR FILLING HOLES
LOOKING SOUTH........ccccovsraeee

VERTEX COORDINATES FOR FILLING HOLES

LOOKING EASTcniniriiniinriscsnssnssssisssesssmssssssessssssssssasas
VERTEX COORDINATES LOOKING WESTccccoevsuiusuenne

VERTEX COORDINATES FOR FILLING HOLES

LOOKING WESTccotvvmniirniennissennsssisesssssssssssssssssssasens

....................................

VERTEX COORDINATES LOOKING EASTccocvururusianns

115

117

118
120

121
123

124

L

Figure 4.1
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 6.1
Figure 6.2
Figure 6.3

LIST OF FIGURES
Elevation Breakpoint Function . wee 11
View from a Vehicle..........ccorviicivonnicnesesisasscnssens 14
View from a Missile w. 16
Missile Locked Onto a Covered JEepcovveericeicnneesassnsacsansensanes 18
Computations of px, py, and pz . .) |
Tracking Update Algorithm teesases s s sasas et nes 24
Example of the Data Displayed During the Simulation...........c.cccc.u... 26
Indicators For a Ground Platform... .- “ versasenesns 27
Indicators For a FOGM Missile That is Not Trackingcccceue... 29
Indicators For a FOGM Missile That is Trackingcccccceevesceseennas 30
Collision Detection AlOrithIm............coevivienienennessssasesenssscesesaensasnens 31
Ground Track of SUN ...t 34
Lighting Model SUmmMAary........ccocoiecnesinescarinecrssosssccssncsssssssssnneseas 37
Field-of- VIew DISPIAYcccccecinenicnensecrnnsnensersessesssssssssesassssssassssses 39
90 Degree Field-of-View Problem.............cuiecrnennnincncnienssssisnsisans 40
Code to Correct 90 Degree Problem.ccccevvinccenisensnnnseneneraenans 41
Terrain Drawing DireCtion.........oecvivinieinenincssnssiscnssesnsisesssesesssssssssasses 43
Terrain Display Attenuation Examplecccovciveerisneniniencssnnsasnenses 47
Holes from Drawing Terrain.c.coviviericinenisnnsnsnanesesenisssscssssssanee 48
Filling Holes in TErTaiN..........ccovveninniriiacisanesesssesesassssasssaensassessaseasasans 49
Packet Headers Available to MPS ... 55
Line of Code That Must Appear in the System File /etc/services 59
Algorithm FOor RECEive PrOCESSoceecinerreeensnrrsescesesreseonessssesesnsanns 60
ix

Figure 8.1
Figure 8.2

Figure A.1
Figure A.2
Figure B.1
Figure B.2
Figure B.3
Figure B.4
Figure D.1
Figure E.1
Figure E.2
Figure E.3
Figure E4

How the Terrain Should be Displayed..............cuneneirierniseernerseesenens 66

How the Terrain i Displayedocovceveierinecrnenenennnnseressssssssesessenens 67
Dial Box With Dials Labeled For Driving...........cc.cccceveuerneeccrcnrenenes 85
Dial Box With Dials Labeled For Flying..........ccococvcvvnineicscninicnsnnanannee 87
Module Structure For main() and event(}coccernveernerencecnesneraeenes 90
Module Structure For event_driving().........cccoeeeverreereernecneseersensensnenne 91
Module Structure For event_flying()cccceereeeeeernenersecsnnessessanseseanes 92
SUPPOTt FUNCHONSccoveirrrsarissssssescisanssesnssnssssansssaassassssnssaassssasnssnans 94
Example Commands to Draw a Single Polygon For a Platform....... 108
Grid Square Display Looking North...........ccccicninninncicncnncincns 112
Grid Square Display Looking South.............cccevsmurernscssesenccscscnes 116
Grid Square Display Looking Eastccccenviecvunnsiserccsnnsssrcceneas 119
Grid Square Display Looking West.........c.ccoceeenieecvececenssssoneaccssanessas 122
x

I. GRAPHICS SYSTEMS OVERVIEW

A. INTRODUCTION

Graphics workstation performance measurement is a complex and diverse topic.
There is currently no standard that is utilized throughout industry or academia to mea-
sure the performance of graphics workstations. As a consequence of this, graphics
workstation manufacturers quite often choose numbers better than their competitors
and then construct programs that match the numbers. Some of the current methods of
measuring graphics workstation performance include vectors per second, filled and Z-
buffered polygons per second, and pixels per second. The problem with these mea-
surements is that the accessibility of these numbers varies between applications. No
standard, exchangeable programs exist to compare the graphics capabilities of differ-
ent systems. The programs the manufacturers cite are stamped proprietary and are
generally unavailable.

For graphics workstations, there are four levels of possible performance evalua-
tion. These levels are low-level primitives (points and lines), pictures, systems, and
applications [Ref. 1:p. 348]. We believe that applications level performance evalua-
tion is the best overall indicator of a workstation’s graphics capabilities. We feel this
is true as a viewer can see such a system running and can be convinced that it is
either fast enough, too slow, or just right for his application of similar complexity.

For applications level performance evaluation, there are many potential applica-
tions from which to choose. For this study, we explore graphics workstation perfor-
mance evaluation using the visual simulator paradigm. We examine the Moving
Platform Simulator (MPS), a simulator of known complexity and operating character-
istics, and one whose source is readily attainable. We chose the visual simulator
paradigm for performance measurements because this type of system has a realistic
mix of CPU and graphics computational requirements. MPS is a real-time, three

iR

dimensional simulation of moving platforms (jeeps, trucks, tanks and missiles) as
they maneuver over digital terrain. The MPS system was written entirely by students
associated with the Graphics and Video Laboratory of the Department of Computer
Science at the Naval Postgraduate School. The goal of our work in the Graphics and
Video Laboratory is to develop as accurately as possible real-time three dimensional
graphics simulations within the constraints of commercially available graphics hard-
ware. The pictures need to have enough detail to accomplish the selected mission
while maintaining a frame update rate which is as fast as possible.

B. HARDWARE SPECIFICATIONS AND PERFORMANCE ESTIMATES

Several manufacturers produce high performance graphics workstations. These
include Silicon Graphics Inc. of Mountain View, California [Ref. 2:pp. 239-246],
Ardent Computer Corporation of San Jose, California (Ref. 3], and Stellar Computer
Inc. of Newton, Massachusetts [Ref. 4:pp. 255-256). Table 1.1 compares the manu-
facturers’ rated performance of their workstations.

The numbers cited in Table 1.1 are meaningless as accurate indicators of relative
performance. We can make such a statement as we do not have complete information
as to how these numbers were derived. We do not know what techniques were uti-
lized nor do we even have the programs from which these numbers were generated.
We can get a more accurate measurement of the performance of such workstations if
we instead utilize them for an application of known complexity for which the source is

available.

TABLE 1.1 MANUFACTURERS’ SPECIFICATIONS

WORKSTATION CPU CAPABILITY NOTES
IRIS 3120 2 MIPS 1000 10x10 pixel polygons

IRIS 4D/70G 10 MIPS 5500 polygons
IRIS 4D/70GT 10 MIPS 60,000 polygons

120,000 triangles

40,000 10x10 pixel quadrilaterals
Stellar GS1000 25 MIPS 150,000 100 pixel triangles
Ardent Titan 16 MIPS (4) 200,000 triangles

400,000 vectors
Notes:

1 - Z-buffered, Gouraud shaded
2 - lighted, Gouraud shaded
3 - shaded '

II. SIMULATOR DEVELOPMENT AND PERFORMANCE HISTORY

The MPS simulator has evolved from a number of student efforts at the Naval
Postgraduate School. In order to understand MPS, we need to discuss its originating

systems.

A. FOGM MISSILE SIMULATOR

The Fiber Optically Guided Missile (FOGM) simulator [Ref. 5:p. 10] was origi-
nally developed at the Naval Postgraduate School on a Silicon Graphics, Inc. IRIS
3120 graphics workstation. The FOGM simulator allows a user to see the three-
dimensional view from the missile as it flies over a fixed 10x10 kilometer area of Fort
Hunter-Liggett, California. The missile is able to target, track, and destroy vehicles
on the ground. The elevation data for the simulation was provided to the Naval Post-
graduate School by the U. S. Army’s Combat Developments Experimentation Center
(CDEC) at Fort Ord, California. The most difficult task in that project was providing
for real-time hidden surface elimination. The IRIS 3120 does not have hardware sup-
port for real-time, double buffered hidden surface elimination, so a scanline Painter’s
algorithm [Ref. 6: p. 39] was used. This algorithm sorts all polygons from farthest
away to closest to the viewer’s position. All polygons are then drawn in that order to
ensure that objects closer to the viewer’s eye are not obscured by objects which are
further away. There are also algorithms to ensure that vehicles are drawn on top of
the terrain, in a proper orientation, and in their proper 100x100 meter grid square.
Vehicles had to be drawn after the terrain on which they appeared. When a vehicle
was near the boundary between two grid squares, special logic had to make sure the
vehicle was drawn after both grid squares. There was no control over the vehicles;
they were only given an initial heading and speed.

B. VEH VEHICLE SIMULATOR
The vehicle (VEH) simulator [Ref. 6:p. 8] was also developed on the Silicon
Graphics, Inc. IRIS 3120 graphics workstation. It contained the same features as the

FOGM simulator for drawing terrain and vehicles. In VEH however, one could actu-
ally drive and maneuver a vehicle on the ground in real-time. Only the terrain in the

field-of-view was drawn using the Painter’s algorithm.

C. FOGM/VEH NETWORKING SIMULATOR

FOGM/VEH NET was a modification of the FOGM and VEH simulators to allow
them to network with each other over the Ethernet local area network that links all
the graphics workstations together. Networking allowed one user (VEH) o drive a
vehicle on one workstation, with the changes in position appearing on the other work-
staion (FOGM). The missile could also be flown on one workstation and seen on

the other workstation.

D. VEH I VEHICLE SIMULATOR
VEH 1II was the result of moving and modifying the VEH simulator from the IRIS
3120 to an IRIS 4D/70G graphics workstation. Many enhancements were made to the
original VEH including the following:
+ Complete operation under the MEX [Ref. 7:p. W1] window management system
« Popup menus for all user selected options

* Vehicles could be added to the current "convoy" after driving had commenced

¢ Pre-saved files of convoys could be entered into the simulator simply by making
the correct selection on a popup menu

+ The current convoy could be saved to a file for later use, and/or modification
» Multiple processes could be present on the screen simultaneously

VEH I was then modified for the SGI IRIS 4D/70GT hardware and software.
Basically the new VEH II had the same capabilities as the old, however some modifi-
cations had to be made to allow the program to be compatible with the newer hard-

ware and the 4Sight [Ref. 8] window management system on the 70GT.

"

E. FOGM, VEH, AND VEH Il PERFORMANCE HISTORY

The FOGM, VEH, and VEH II simulators had the capability of representing the
field-of-view anywhere from 15 to 55 degrees. In the 15 degree field-of-view, approx-
imately 2000 triangles were drawn. Approximately 8000 triangles were drawn in the
55 degree mode. Since the triangles are different sizes based on their location and the
viewer’s viewpoint, the number of triangles drawn per second is not an accurate mea-
surement of the performance of the graphics workstation. Instead, the measurement
used to compare the performance of the simulators was the number of frames per sec-
ond drawn. Tables 2.1, 2.2, and 2.3 show the number of frames per second drawn for
the three simulators on the three different IRIS graphics workstations.

Since the IRIS 3120 workstation had a relatively slow CPU, only six to eight
frames per second of the original VEH simulator could be displayed. After moving the
simulator to the IRIS 4D/70G additional enhancements were made, many to improve
the user interface. This did not affect the drawing speed, which almost doubled at
times as compared to the IRIS 3120. This is essentially due to the faster 10 MIPS
Processor.

Recall the IRIS 4D/70GT also contains a 10 MIPS CPU, however it contains
faster graphics pipeline hardware. The tables show the increase in drawing speed for
these workstations. Again, over twice as many frames per second of the VEH II sim-
ulation can be displayed. Tables 2.1, 2.2, and 2.3 show the dramatic increase in speed
of the vehicle simulator models due to the increase in processor speed and hardware
capability.

TABLE 2.1 ONE VEHICLE ON TERRAIN (FRAMES / SECOND)

SIMULATORMACHINE ISDEGREEVIEW 355 DEGREE VIEW

VEH/3120 8.0 6.5
VEH 1I-4D/70G 14.0 70
VEH I-4D/70GT 30.0 16.0

TABLE 2.2 NINE VEHICLES ON TERRAIN IN VIEW (FRAMES /

SECOND)
SIMULATOR/MACHINE 15 DEGREE VIEW 55 DEGREE VIEW
VEH/3120 4.0 35
VEH 1I-4D/70G 5.0 30
VEH I-4D/70GT 10.0 6.0

TABLE 2.3 NINE VEHICLES ON TERRAIN, NONE IN VIEW (FRAMES /

SECOND)
SIMULATOR/MACHINE 15 DEGREE VIEW 55 DEGREE VIEW
VEH/3120 6.0 5.0
VEH I1-4D/70G 120 7.0
VEH [I-4D/70GT 250 160

IOL THE MOVING PLATFORM SIMULATOR (MPS) DESCRIPTION

The Moving Platform Simulator (MPS) is a combination of the FOGM and VEH I
simulators with the addition of many new options and advanced capabilities. MPS
takes advantage of many features built into the hardware of the Silicon Graphics, Inc.
IRIS 4D/70GT. The additional capabilities of the Moving Platform Simulator include:

e Complete operation under the 4Sight [Ref. 8] window management system

» The ability to select any 10 x 10 kilometer grid area from the 35 x 35 kilometer
database

* RGB color mode
+ User selectable terrain elevation color schemes

» User selectable month and hour to determine the sun’s location for light intensi-
ty and color

* Realistically lighted vehicles and terrain

e An efficient terrain display algorithm that includes distance attenuation to
improve performance while displaying more terrain than earlier models

¢ Z-buffering for hidden surface removal
* Collision detection
» The ability to track, target, and destroy land vehicles from a FOGM missile

« Broadcast networking to allow multiple simulations to network on different IRIS
workstations

L e oo . e o

A complete discussion of the user interface for MPS can be found in Appendix A.
Appendices B and C explain the module and file organization for MPS in detail.

IV. OPERATING AREA

A. FORT HUNTER-LIGGETT DATABASE

The terrain database that the Moving Platform Simulator uses is a small subset of
a database provided to the Naval Postgraduate School by the United States Army
Combat Developments Experimentation Center (CDEC) at Fort Ord, California. This
database consists of elevation and vegetation data in 12.5 meter increments in the
area formed by a square with the lower left comer at the Universal Transverse Merca-
tor (UTM) grid coordinate 10SFQ41006000 and upper right comer at
10SFQ77009500. This area is 36 kilometers wide and 35 kilometers high. Each sam-
ple consists of 16 bits (two bytes). The three most significant bits are a vegetation
code defined in Table 4.1. The remaining 13 bits, after conversion to decimal, is the

TABLE 4.1 VEGETATION CODES FOR DATABASE

VEGETATION CODE DESCRIPTION
binary decimal
000 0 <1 Meter
001 1 1 - 4 Meters
010 2 4 - 8 Meters
011 3 8 - 12 Meters
100 4 12 - 20 Meters
101 5 >20 Meters
110 6 No Data Available
111 7 . Not Used at This Time

elevation in feet at the point of the sample. The complete database consists of 6400

(802) samples per square kilometer, 1260 (35*36) square kilometers, and two bytes
per sample which results in a file that contains 16,128,000 (6400*1260*2) bytes.

The Moving Platform Simulator is designed to handle a 35x35 kilometer area with
a resolution of 100 meters. Therefore, the database from CDEC was reduced down

from its original size to a file of 245,000 bytes. There are 100 (102) samples per
square kilometer, 1225 (35*35) square kilometers and two bytes per sample which
yield 245,000 (100*1225%2) bytes. The vegetation information was ignored since
most of the codes indicated that the information was unknown.

B. SELECTION METHODOLOGY

The Moving Platform Simulator is designed to allow a user to select any 10x10
kilometer area from the 35x35 kilometer database. The 10x10 kilometer restriction is
due to the restriction in the original version of the Vehicle Simulator (VEH) [Ref. 6:p.
15]. A logical modification to MPS is to eliminate this restriction.

Also, the user is restricted to selecting an area that begins and ends on a one kilo-
meter grid line. As an example, he cannot select an area beginning at
10SFQ44246868. The user is restricted to selecting an area where the two sets of
four digit numbers after the 10SFQ are multiples of 100. Therefore, the user is able to

select one of the following: 10SFQ44006800, 10SFQ45006800, 10SFQ44006900, or
10SFQ45006900.

C. GLOBAL COLOR SCHEME

The base color (before lighting) of the terrain polygons is selected by the user
from a popup menu of available choices. The default coloring scheme is a brown ramp
with eight primary colors. The colors in the brown ramp range from almost black to a
deep brown. Black indicates the highest elevations and the brown the lowest. The col-
or to use for any particular elevation is selected from these eight colors by using a lin-
ear function shown in Figure 4.1. Notice that the manifest constants MIN_ELEV and
MAX_ELEYV are defined in the header file mps.h and represent the absolute minimum

10

PR —

/* Creates a linear 'ramp’ of elevations between the min and max */
for(i=0;i<=7;i++)
bkpt{i] = (MINELEYV +i + 1) * (MAXELEV - MINELEYV)/ 8);

FUNCTION AS IT APPEARS IN MPS

MINELEY = zero meters
MAXELEYV = 1134 meters

MANIFEST CONSTANT VALUES

for(i=0;i<=7;i++)
bkpt[i] = (i + 1) * (1134 / 8);

FUNCTION WITH MANIFEST CONSTANT VALUES SUBSTITUTED

bkpt{0] = 1 * 1134/ 8 = 141
bkpt{1] =2 * 1134 /8 = 283
bkpt[2] =3 * 1134/ 8 = 425
bkpt{3] = 4 * 1134/ 8 = 567
bkpt{4] =5 * 1134 /8 = 708
bkpt[S] =6 * 1134/ 8 = 850
bkpt{6] =7 * 1134/ 8 =992
bkpt{7] =8 * 1134/8 =1134

RESULTING VALUES FOR bkpt[]

Figure 4.1 Elevation Breakpoint Function

11

T T T

and maximum elevations in the entire CDEC terrain database.! The function divides
the difference into eight equal distances and then repeatedly calculates the proper val-
ue eight times which yields a linear ramp of breakpoints between the different colors
in the color ramp. The breakpoints are stored in a short array. The functions dis-
play_big_ map() and display map() use this array of breakpoints to display the two
dimensional maps, drawterrain() uses it to draw the three dimensional terrain, and
display legend _for big_ map() and display_legend_for_navbox() use it to draw the
legends for the two dimensional maps.

In addition to the eight primary colors discussed above, each color ramp is aug-
mented with eight secondary colors for the purpose of checkerboarding the three
dimensional terrain. Each primary color has a corresponding secondary color that is
slightly darker. When more than one terrain square falls into the same elevation
breakpoint, then every other square is drawn in the secondary color. This gives the

terrain relief and depth when large areas are at similar elevations.

1
This function can be found in the file display_big map.c.

12

O .

-

V. GRAPHICS DISPLAY SPECIFICS

A. PICTURE COMPLEXITY

After completing the introductory and main menus, the main event loop of the sim-
ulation begins. This portion is further divided into driving and flying sections.

While driving a platform, other platforms and the terrain are displayed on the
screen. The view of the world is from the driver of the selected platform. Since it is
computationally expensive to display graphical objects which do not appear in the
field of view, only the objects and terrain that can be seen are displayed. A platform
such as a covered jeep is composed of approximately 50 polygons .

Four graphical windows are visible while driving a vehicle. These are illustrated in
Figure 5.1. The platforms and terrain are present in the map window, which is the
same window used to display the initial terrain maps. The menu window, which is
located in the upper right hand area, must be updaméa cach display frame and contains
performance and simulation information such as:

¢ Current frames per second drawing speed

¢ Average of the last 100 frames per second values

¢ Current hour of the day for light location and intensity

¢ Current month of the year for light location and intensity

¢ Current sunrise, midday, and sunset times

e Total number of polygons that are being displayed in the map window

The navigation window appears in the middle right hand side and contains a small-
er picture of the 10 x 10 kilometer operating area. Since this area is fixed during plat-
form operations, it is only drawn once in the color scheme selected by the user. Using
the overlay drawing capability, a blue arrow and corresponding V shaped lines alert
the user to the course and field of view of the currently controlled platform. These

lines can be erased and redrawn each frame without having to redraw the entire map.

13

T

Figure S.1 View from a Vehicle

-

: '%

W,

f

S

Above the map display is a legend to equate the terrain color to the corresponding
elevation value.

The indicator window appears in the bottom right hand side and contains informa-
tion about the platform that is currently being controlled. This information includes:

* Velocity

* Course direction

* View direction

* Zoom angle for field of view
¢ Dial help information

All of these quantities must be updated for each frame. Although there is no mea-
surement of the tilt angle, the user can also adjust the tilt of the eye with the appropri-
ate dial.

With exception of added detail, the complexity of the picture while flying a missile
is similar to that of driving a vehicle. This is shown in Figure 5.2. Other vehicles and
missiles can be visible with the terrain in the map window. This simulates the view
an operator has from the camera on the missile. In addition, the tilt and pan angle val-
ues are displayed along a slider bar in the map window. These are controlled using
the mouse. In the center of the map window is a rectangular box formed by four white
dots. This defines the tracking area in which a vehicle must be seen in order to be tar-
geted. While a vehicle is being tracked by the missile, the dots flash white and red
and the tracked vehicle type is displayed toward the top of the map window.

The menu and navigation windows contain the same information as for the driven
vehicles. The indicator window, however, displays different quantiies. If a vehicle is
not being tracked, the following quantities are updated and displayed for each frame:

t

* Velocity

¢ Course direction

* Zoom angle for field of view
* Altitude to ground level

15

Figure 5.2 Viewfroma M
16

» Altitude of the missile to the terrain
+ Dial help information
When the missile is locked onto a vehicle, the user cannot activate all the func-
tions described above. This is also reflected in the information given to him in the indi-
cator window. Figure 5.3 shows the view from a missile as it is locked onto a covered
jeep. The user can no longer change the missile’s course, pan view, tilt view, or alti-
tude. Additional information is present in the window to keep the user informed of the

current distance between the missile and the target.

B. INCORPORATED GRAPHICS TECHNIQUES

Many graphics techniques are incorporated in the simulation to produce the
images which are displayed in each window. These techniques take advantage of the
hardware to achieve the necessary speed while performing the desired task.

1. Double buffering

Double buffering is a technique where the picture to be displayed is drawn in
an area of memory that is not currently being displayed (the back buffer). After the
picture is completed, the function swapbyffersQ displays the completed picture. This
gives the appearance of smooth motion since the user sees only the changes from
frame to frame.

The buffer must be cleared before each picture is drawn. If single buffering
were used, the screen would flash repeatedly and the appearance of smooth motion
would be impossible.

2. Z-buffering
Z-buffering [Ref. 9:pp. 262-264] is one' way of achieving hidden surface
elimination. Recall that the earlier simulations relied on a scanline Painter’s algorithm
to order the objects in the scene from farthest away to closest to the viewer’s eye.

The scanline Painter’s algorithm was complicated to implement and consumed the

17

s rm..'.MTMMWT,WMWmehm@ B e
< NS 1 R ; SR

A
Y57 4ty . $t D

L

Figure 5.3 Missile Locked Onto a Covered Jeep

18 !ﬁ

TITTT T

available CPU capacity. This technique was utilized because the earlier workstations
did not have the capability of supporting Z-buffering and double buffering
simultaneously.

The concept of Z-buffering is quite simple, and the hardware implementation
allows it to execute quickly. The coordinate system is constructed so that the z-axis
is perpendicular to the plane of the screen. Initially, the z-depth is set with an Iset-
depth() command from zero to hexadecimal 7fffff, the largest value possible for the 24
bits of Z-buffer memory available. Each time the terrain and platforms are to be
drawn, Z-buffering is activated using the zbyffer(TRUE) command, and the Z-buffer
is cleared using the zclear() command. The zclear() function sets the Z-buffer to the
farthest away value (7£ffff).

When all of the polygons comprising the desired terrain and platforms are
drawn, the system keeps track of the z-value for each filled pixel on the screen. Only
the pixel with the closest z-value is displayed. On the IRIS 4D/70GT, these is no
time penalty for using Z-buffering, and its use greatly simplifies the display algorithm.

3. RGB Color

Earlier simulations used color map mode by defining red, green, and blue color
values for each index into a color lookup table. The desired color was selected by set-
ting the color to the appropriate index. This method does not work with the real-time
lighting and shading techniques of the IRIS 4D/70GT, so the simulation was convert-
ed to RGB color mode.

Instead of defining indices into a table, the desired color is activated with a
RGBcolor(r,g,b) call after the function RGBmode() is called once during the initializa-
tion phase of the model. The parameters r, g, and: b are short integer values from zero
to 255 and define the amount of red, green, and blue components desired. RGBcol-
0r(255,255,255) is white, while RGBcolor(0,0,0) is black. Besides RGB color mode,

19

the IRIS 4D/70GT’s lighting capabilities are used in the simulation. Details of the
lighting capabilities used are discussed in a later section.

4. Perspective World Views

A world coordinate system is defined in each window of the simulation. For
two dimensional views, this involves using the ortho2() command with its appropri-
ate parameters. The values of the parameters are chosen for convenience, since all
drawing is performed in the world coordinate system.

In order to give the appearance of a three dimensional view in the map window
while operating a platform, perspective() and lookat() commands are used. The per-
spective() command is called with the following arguments:

* Field of view angle

e Ratio of x to y of window

¢ Near clipping plane value

» Far clipping plane value (look distance)

The field of view is selected by the user. The ratio of the x to y of the map win-
dow is one since the window is chosen to be a square. The near clipping plane value
is 0.1, because zero does not work with Z-buffering. The far clipping plane is chosen
to be large.

The lookat() command is called with the following arguments

e X of viewer’s eye

¢ Y of viewer’s eye

* Zof viewer’s eye

» X of position to focus upon (px)

» Y of position to focus upon (py)

» Z of position to focus upon (pz) '
» Twist angle rotation about z-axis

The viewer's x, y, and z position is the location of the platform being operated.
The y-coordinate is adjusted for the height of the driver's eye above the base of the

T

e
oo

)

platform. The position to focus upon is a function of the platform’s location, look dis-
tance, and tilt angle. Figure 5.4 shows the computations for these quantities. The

twist angle is set to zero.

/* compute coordinate of where camera is looking */
sine = sincos(lookang,&cosine);

*px = driven->x + cosine * MAXLOOKDIST;

*pz = driven->z - sine * MAXLOOKDIST;

if(tlt > 0.0)

*py = (TILT_FACTOR * tilt) * driven->y;
else

*py = 0.0;

Figure 5.4 Computations of px, py, and pz

C. INCORPORATED MODEL TECHNIQUES

1. Platform Attitude Update

Before each frame is displayed in the map window, all the platforms must be
updated to account for their movement from the previous frame. This involves
updating its position on or above the terrain, its grid position, and the viewer’s look
position.

MPS uses the same algorithm as the one in VEH [Ref. 6:p. 72] to update the
position and grid position of each platform. Briefly, this involves computing the new
position as a function of the platform’s velociéy and elapsed time since the last
update. The platform’s tilt angle (rotation around x-axis) and incline angle (rotation
around z-axis) are also computed based on the orientation of the terrain beneath it.
The platform’s heading is a function of its course, which is saved in the structure for

21

each platform. A complete description of the computations of these angles can be
found in [Ref. 6:pp. 70-78].

A linked list is maintained for each grid square to keep track of the platforms
currently in each square. As the platforms move, their x and z positions change. Since
there are 100 grid squares in each direction (x and z), the updated x and z positions of
cach platform are divided by 100 and truncated to determine the new grid square in
which the platform resides. Then the platform is removed from the previous grid
square list and placed in the list pointed to by the new grid square. These lists simpli-
fy the displaying of the platforms. After drawing a given grid square, its pointer is fol-
lowed to the list of platforms to be displayed within the grid square.

The function update look pos() and update look pos fogm() are used to
update the viewer’s look position. This operation involves setting the position upon

which to focus in the lookar() command.

2. Target Selection and Lock
Target selection is only allowed when a user is operating a FOGM missile
and there is at least one ground platform active in the simulation. A ground platform is
defined to be one of the following types of platforms:
e Tank
* Truck
e Jeep - Covered
e Jeep - Open
The ground platform targeted may either be one specified interactively or
obtained from another process if networking is currently active.
The actual process of selecting a target is performed by moving the mouse
until the desired target is in the crosshairs of the missile. Figure 5.3 shows a picture
of a covered jeep inside the crosshairs of a FOGM missile. Zooming the camera in

and out assists the user in placing the crosshairs on the target.

22

e
'

8.

W

N M

When the target is inside the crosshairs, and the user desires to lock onto it,
he must push the right mouse button and select TOGGLE TARGET TRACKING.
The functions in the file racking check.c() determine if a platform was in fact inside
the crosshairs of the FOGM missile. If one is found, MPS performs the actions neces-
sary to lock onto the target.

The actual algorithm that determines if a platform is in the crosshairs of the
missile involves the IRIS pick capability. That capability allows a programmer to easi-
ly determine if a picture element is within a desired rectangular window. If one or
more picture elements are present, unique identification numbers are returned in an
array as well as the number of elements that were detected. By defining the rectangu-
lar window to be where the crosshairs are, the function is able to accurately deter-

mine if a platform is inside the crosshairs.

3. Missile Tracking Update

After the user has targeted and locked onto a platform, the missile must track
and destroy it. To do this, MPS takes control of the altitude, course, and nose camera
movement controls. The user still has control of all other input devices. The nose cam-
era tilt and pan angles are set to zero when a platform is targeted and locked onto so
only the altitude and course need to be adjusted automatically by MPS. The function
that performs the necessary calculations to update these parameters is han-
dle_tracking(). The algorithm that is used has basically two parts. The first part takes
the distance that the missile traveled in this frame update and calculates the neces-
sary change in the altitude of the missile. The second part of the algorithm changes
the course so that it coincides exactly with the location where the targeted platform
will be after the frame update. The code for this algorithm is in Figure 5.5. In addition
to this algorithm, the lookat() function is set so that the user’s point-of-view is
exactly pointed at the center of mass of the targeted platform. This is done in the func-

tion update _look_pos_fogm().

23

/* Find the distance that the missile traveled in relation to the

platform that it is tracking. */
deltax = temp->x - temp->track->x;
deltaz = temp->z - temp->track->z;

/* Find the angle that the missile needs to point to track the platform */
angle = (float)(atan2((double)(deltaz),(double)(-deltax)));
if (angle < 0.0) angle += TWOPI,

/* Set the angle and course for the missile */

temp->ang = angle;

temp->cse = ((angle*RTOD) <= 90.0) ? (90.0 - (angle*RTOD))
: (450.0 - (angle*RTOD));

/* Calculate the distance the missile traveled in this frame */
distance_missile_traveled = temp->vel*elapsedsec;

/* Calculate the ground distance to the tracked platform */
ground_distance_to_target =
((float)(hypot(((double)(deltax)),((double)(deltaz)))));

dist_ratio = distance_missile_traveled/ground_distance_to_target;
ground_level = gnd_level(temp->track->x,-temp->track->z);

/* Calculate the new altitude for the FOGM missile */
/* The 0.35 factor is a number that made the function look most realistic */
temp->alt -= (.35 * (temp->alt - ground_level) * dist_ratio;

TWOPI = Twe Pi = 6.2831853
RTOD = Radians To Degrees = 57.295779

Figure 5.5 Tracking Update Algorithm

24 *

4. Indicator Displays

The Moving Platform Simulator involves many functions and operations that
require information to be displayed to the user. Most of this information is displayed
in a window in the upper right portion of the simulation. An example of this informa-
tion is depicted in Figure 5.6.

The first line of data indicates the frames per second (FPS) in two different
ways. The left number is the FPS for the current frame. The right number is the FPS
for the last 100 frames.

The next line indicates the hour of the day and the month of the year. These
determine where the sun is located, what color it is, and its intensity.

The next line indicates the time of day that sunrise, sunset and midday occur
for the current month. This information is helpful when setting the time of day to view
the lighting effects in the morning, evening, and midday.

The next line indicates the number of polygons that were drawn to generate
the three dimensional picture. This number includes not only the polygons that make
up the terrain but also the polygons in all the platforms.

Other information that is displayed during the simulation include the following:

« If you are tracking a platform, the type of platform you are tracking is displayed
in the upper center of the viewing area.

» If you are a tracked platform, a message indicating this is displayed in the upper
center of the viewing area.

* When operating a missile, the tilt and pan angles of the nose camera are indicat-
ed on slider bars on the left and bottom of the viewing area.

* Superimposed on top of the small two dimensional map on the right side of the
screen is a small blue arrow indicating the course of the driven platform, and a
larger blue V indicating the current field-of-view.

» Also superimposed on the two dimensional map are blue dots indicating all oth-
er ground platforms currently in the simulation and black dots indicating FOGM
missiles in the simulation.

e In the lower right of the simulation is a depiction of the mouse and dials with
labels indicating the function of each. Also, there are indicators such as course,
speed, altitude, etc. Figure 5.7 shows the indicators for a ground platform.

25

FRAMES/SEC
CURRENT AUERAGE
3 | 2
HOUR MONTH
1325 June

SUNRISE MIDDAY SUNSET
0600 1330 2100
POLYGONS DRAWN:
1483
NETWORKING IS OFF

Figure 5.6 Example of the Data Displayed During the Simulation

26

SPEED
U mph

UVIEW DIR
g o

COURSE

225 O

Figure 5.7 Indicators For a Ground Platform

27

Figure 5.8 shows the indicators for a FOGM missile that is NOT tracking a
platform and Figure 5.9 shows the indicators for a FOGM missile that IS
tracking a platform.

5. Collision Detection

Collision detection was implemented to increase the realism of the Moving
Platform Simulator. When any two platforms, including obstacles/wrecks, are closer
than an arbitrary distance (currently set to S meters) then both platforms are
destroyed and changed to wrecks. If one of the platforms was the driven platform then
the user is returned to the main menu and the platform he was operating as well as
the one he hit are turned into wrecks.

The function that implements collision detection is collision_detection(). Fig-
ure 5.10 outlines the algorithm for collision detection.

D. LIGHTING AND GOURAUD SHADING

1. Light Intensity, Location, Color

The Moving Platform Simulator contains real-time realistically lighted plat-
forms and terrain using hardware routines for lighting and Gouraud techniques for
shading. In MPS, the user can select any hour, minute, and month under which to
operate. A sunrise time and total number of daylight hours are defined for the months
January, June, and December. From these times the sunrise, sunset, and midday
times are computed for the current month selected by linear interpolation.

If the user selects a time that is later than sunset or earlier than sunrise then
the attributes defining the light are set to approximate night conditions. Since the sky
is drawn independent of the lighting model its color is also changed for night by calling
RGBcolor() with pre-defined night colors. |

The color of the sky is also changed during the daylight hours. To simulate the
mormning and evening skies the sky’s color is set to a reddish tint for one hour after

sunrise or one hour before sunset. At other times during the day, the sky’s red, green,

28

ZUUM
20 ©

AL T GND
39 M
ALT MSL

599 n

SPEED
1 mph

COURSE
355 O

Figure 5.8 Indicators For a FOGM Missile That is Not Tracking

s

29

w T

Z00M SPELED
g © g mph

ALT GNOD

49 M

ALT MSL COURSE
397 m 18¢ ©

T6T DIST
496 nm

Figure 5.9 Indicators For a FOGM Missile That is Tracking

30

[,

while (currveh = NULL)
if (currveh->t 1= WRECK)

{

_ /* Check for platform OUT OF BOUNDS. */

' if (currveh->x <= FUDGE |l currveh->x >= 10000.0-FUDGE ||
-currveh->z <= FUDGE [l -currveh->z >= 10000.0-FUDGE)

‘ {
k numveh{currveh->t]--;
numveh{WRECK]}++;

currveh->t = WRECK;

currveh->vel = 0.0;

if (currveh == driven)

{
*event_status = EVENT_START;
explosion();

]

}
}

/* Check for collisions between platforms */
checkedveh = currveh->next;
while(checkedveh != NULL)

{

if(there_is_a_collision(currveh,checkedveh))
kill_the_platforms(NON_NET,currveh,checkedveh,event_status);
checkedveh = checkedveh->next;
)

currveh = currveh->next;

)

#define FUDGE 150.0
#define MIN_SEPARATION 5

Figure 5.10 Collision Detection Algorithm

31

and blue (RGB) components are computed as a function of the current time. RGB
components of the sky are defined for sunrise, midday, and sunset. The actual sky col-
or is found by linear interpolation between these values.

On the IRIS 4D/70GT, light sources are described by defining their ambient
color and position. RGB values are defined for the light source in MPS at sunrise, mid-
day, and sunset. Then the RGB components of the light’s ambient characteristics and
color are found by linear interpolation using the current time. To account for the differ-
ence in months, a factor is also computed for each month. This is used to multiply
each component and to have the light (sun) appear with less intensity in the winter
months and more intensity in the summer months.

The determination of the sun’s location and color gives MPS a realistic lighting
model. The terrain and vehicles appear brighter at noon and darker toward sunrise
and sunset. The time between sunrise and sunset is longer in June and shorter in
December. Be aware the actual values chosen for sunrise and number of hours in the
day for each month are not based on any real data. Instead they are chosen so that
longer days appear in the month of June and shorter days appear in the month of
December. During other months the sunrise time and number of hours in the day are
found by linear interpolation.

The sun appears to move from the positive x-position (east) to the negative x-
position (west) as time changes from sunrise to sunset. The first quantity computed
is the sun’s z-position in the sky at noon. This is a function of the month, with the
sun at 5000.0 in the z direction in January, zero in June, and 6000.0 in December. At
noon both the y-position and x-position are zero. This means at noon the sun is
directly over the origin in June and farthest away from the origin in December.

The radius of the sun about the x-axis lis computed next as a function of
month. The pre-defined values for the sun’s radius are 7500.0 in January, 10000.0 in
June, and 7000.0 in December. These values give the appearance of longer days in

32

-

June, since the sun travels from 10000.0 to -10000.0 and shorter days in December,
since the sun travels from 7000.0 to -7000.0.

Figure 5.11 shows the ground track the sun makes as it moves across the sky
in the months of June and December. The paths during the other months fall in
between these paths. The x-position of the sun is computed using the current time of
day and radius. Then the y-position is defined by solving the equation of a circle. For
example, if the current time is sunrise in June, the x-position would be 10000.0, the y-
position would be zero, and the z-position of the sun would be zero. The sun’s posi-
tion is normalized for the graphics’ lighting model.

After defining all parts of the sun in the array light, it is defined with a Imdef)
command and bound with a Imbind() command as follows:

o setwindow(MAPWIN);
e Imdef(DEFLIGHT MYLIGHT,14 light);
¢ Imbind(LIGHTO,MYLIGHT);

Note that this must be done in the window in which the light is to be used.
The Imdef() command equates the light’s characteristics with a manifest constant
MYLIGHT. The Imbind() binds the light’s characteristics to light number zero.

2. Platform Lighting

Material characteristics must be defined for each polygon in order to use the
lighting model. This includes defining the emitted, diffuse, and ambient parts for the
RGB components. In MPS an infinite light source is used since a local light is not
computationally free.

A very small amount of emitted color is defined for each platform in order to
make night viewing easier. However the emitted'red of the rear lights is set to one,
and the emitted RGB components of the headlights are set to one (white).

The diffuse portion of the material describes how much light is reflected from
the direct sun. Recall there are approximately 50 polygons grouped to form each

33

Operating Area

.

-10000.0 \ } 1Km
1
k]
JT
X
-10000.0 0.0 | 10000.0
December
10000.0
Z

Figure 5.11 Ground Track of Sun

34

N Jaasbe

Lo

platform. All the outside polygons of cach platform are defined to have the same
diffuse qualities. Likewise, all the inside polygons are defined with identical diffuse
qualities, but these qualities are not the same as those used for the outside polygons.

The ambient portion of the materials describes how much light is reflected from
the material that is not in direct sunlight. Again all the outside polygons are defined to
have one characteristic, while all the inside polygons have another. No work was
done to explore the possibility of changing the diffuse or ambient qualities of specific
polygons of the platforms. This could give a more realistic appearance to the platform
and is discussed in the chapter concerning future capabilities (Chapter VIII).

Normal vectors are computed for each polygon of the platforms during initial-
ization. During operation, the amount of light reflected from a platform’s polygon is a
function of the angle between the polygon’s normal vector and the light source using
Lambert’s Cosine Law [Ref. 9:p. 278].

3. Terrain Lighting

Real-time lighting models were not used in earlier simulations so the terrain
was drawn using a checkerboard effect, varying the shades of green as a function of a
fixed light source. The terrain’s color in MPS is drawn to have the same color as the
large map display and the temain’s intensity changes as the sun moves across the
sky.

For each possible color scheme for the terrain, a scale of eight major colors is
used to ramp from low to high elevation. To display the terrain in a checkerboard pat-
tern eight more minor colors are defined, each being slightly darker than the original
cight. When the ten by ten kilometer grid and current color scheme are selected by
the user, each even grid square is labeled with a major color, and each odd grid num-
ber is given a minor color.

Each grid square must also be given emitted, ambient, and diffuse characteris-

tics for the RGB components. All emission quantities are zero, ambient quantities for

35

the red, green, and blue components are 0.5, and diffuse quantitics are set to the color
defined by the elevation scaled from zero to one.

If the selected ten by ten kilometer area contains water, a special water mate-
rial is used. Also a ground plane is drawn with the material characteristics of the cen-
ter grid square (50,50) of the operating area. This area surrounds the operating area
to avoid the appearance that the world ends at the edge of the map.

4. Lighting Summary
The real-time lighting model available on the IRIS 4D/70GT produces realisti-
cally lighted platforms and terrain. It is also confusing at times to follow its implemen-
tation. Figure 5.12 gives a simplified view of the steps necessary to activate the
lighting model. The purpose of Figure 5.12 is not to define all the functions used but to
give an overall view of the steps needed to activate the lighting model. The reader is
directed to the actual MPS program source code and the IRIS User’s Guide [Ref. 10]

for more details.

E. TERRAIN DISPLAY

MPS contains a completely new algorithm for displaying the terrain. All the terrain
within the field of view from the driven position to the edge of the map is displayed. A
distance attenuation procedure is used to speed up the time needed to display the
terrain. Under menu option, it is also possible to draw all the grid squares in a
detailed 100 x 100 meter mode. This section describes the data structure and display
algorithm.

1. Data Structure
After the user selects the ten by ten kilometer operating area, all the data
points within the area are extracted from the database. This involves defining all ver-
tices of the two triangles comprising each 100 x 100 meter grid square. The algorithm
is defined in detail in [Ref. 6:p. 15).

36

L aa ol

/* initialize light model */
define materials for polygons
define sun location for light definition
bind light
compute polygon normals

/* draw platforms and terrain */
turn on Z-buffering option
clear Z-buffer
set mmode to MVIEWING
bind light model
load unit vector on system stack
call perspective and lookat
draw terrain
draw platforms
set mmode to MSINGLE
unbind light model

turn off Z-buffering option

Figure 5.12 Lighting Model Summary

37

2. Display Algorithm

Before the terrain is displayed, the area within the field of view is determined
(see Figure 5.13). To ensure that enough of the terrain is drawn from the driven posi-
tion to the edge of the map, the driven position’s x and z coordinates are offset by val-
ues which are a function of the field of view. A larger offset is needed for smaller fields
of view.

Using the offset position and field of view angle, parallel lines are constructed.
The intersections of the new left and right view lines with the edge of the map are
computed. All grid squares within the bounded arca are displayed as shown in Figure
5.13.

Let (I1x,1z) be the grid square of the left field of view line and (rx,rz} be the grid
square of the right field of view line. Grid square (x,z) is the grid square correspon-
ding to the offset driven position. Note that all z grid squares are chosen to be posi-
tive values.

The algorithm begins by computing the initial starting and stopping x and z val-
ues based on the following criteria:

e xstart is the minimum of Ix, x, rx
¢ xstop is the maximum of Ix, x, rx
e zstart is the minimum of 1z, z, rz

» zstop is the maximum of 1z, z, rz

A test is performed if the field of view is greater than 90 degrees. This can
cause invalid limits to be computed as shown in Figure 5.14. The test shown in Fig-
ure 5.15 is used to make sure the terrain is displayed to the end of the map.

After the grid squares for the left and right view angles are defined, the look
direction is computed based on the current look ax"nglc. If the look angle is greater than
45 degrees and less than 135 degrees, the direction is north. If it is greater than or
equal to 135 degrees and less than or equal to 225 degrees, the direction is west. If

38

TR

AR

(Ix,1z) X,12)

>:
S

Driven

W Position
Offset
Position

(x,z)

Z
. X
grid square

coordinate system

100 x 100 meter grid square

1 grid square (59, 2)

T

Figure 5.13 Field-of-View Display

39

_—

(x,1z)

Offset

Position

(x,z)

X

grid square
coordinate system

= The terrain that would be displayed.

= The terrain that should be displayed.

Figure 5.14 90 Degree Field-of-V

iew Problem

if (fov > 900)

if ((xstart > XMIN) && (xstop < XMAX))
if (1z < 50)
xstart = XMIN;
else
xstop = XMAX;

if ((zstart != ZMIN) && (zstop != ZMAX))
if (Ix < 50)
zstop = ZMAX;
clse
zstart = ZMIN;

T

Figure 5.15 Code to Correct 90 Degree Problem

41

the look angle is greater than 225 degrees and less than 315 degrees, the look direc-
tion is south, otherwise the direction is east.

If the look direction is north, the terrain is drawn from minimum to maximum z.
If the look direction is south, the terrain is drawn from maximum to minimum z. If it is
east, the terrain is drawn from minimum to maximum x. If it is west, the terrain is
drawn from maximum to minimum x (see Figure 5.16).

Next, the limits for the near, mid, and far drawing groups are defined. If the
detailed drawing option is selected, only the near group is used since all the 100 x 100
meter grid squares within the field of view are drawn. If the distance attenuation
option is selected, the distance chosen for the near group is computed as a function of
field of view. The near group is drawn to a further distance for smaller fields of view
since the viewer is able to see further and more detailed terrain is desirable.

After every 100 x 100 meter grid square is drawn in the near group, the
squares are grouped into 200 x 200 meter squares for the mid group. This is done for
the next 2000 meters. The final group, which is drawn from the end of the mid group
to the end of the map, contains grid squares grouped into 400 x 400 meter squares.

The starting x value (looking east or west) or starting z value (north or south)
is adjusted to make sure the mid group starting grid is a multiple of two and the far
group starting grid is a multiple of four. This is done so the vertices of the first row or
column of each group will line up with the previous row or column.

Special tests are performed when either the left or right view lines are within
five degrees of zero, 90, 180, or 270 degrees. Table 5.1 shows the drawing order when
looking north or south. Table 5.2 shows the drawing order when looking east or west.
Functions compute_x_bounds() and compute_z_bounds() in MPS compute these
limits. |

All angle measurements in Tables 5.1 and 5.2 are referenced from the x-axis,

positive counter-clockwise. Quadrant one is between zero and 90 degrees, quadrant

42

) X
grid square
coordinate system

Look direction North. Draw min to max z.

Look direction South. Draw max to min z.

“
.

= Look direction East. Draw min to max x.

Look direction West. Draw max to min x.

|

Figure5.16 Terrain Drawing Direction

43

TABLE S§.1 LOOKING NORTH OR SOUTH

LEFT VIEW ANGLE RIGHT VIEW ANGLE DRAWING ORDER
OR QUADRANT OR QUADRANT
90 deg any RL to ZMAX
1st quad 270 deg ZMINto LL
1st or 4th quad RL to LL.
3rd quad if<x ZMIN toRL
else ZMINto LL
2nd quad 90 deg LL to ZMAX
1st or 4th quads if <x LL to ZMAX
else RL to ZMAX
2nd quad LLwRL
270 deg any ZMIN to RL
3rd quad 90 deg LL w0 ZMAX
1st quad if < x LL to ZMAX
else RL to ZMAX
2nd or 3rd quads LL toRL
4th quad 270 deg ZMIN to LL
2nd or 3rd quads if <x ZMIN to RL
else ZMINto LL
4th quad RLtwo LL
RL = right view line
LL = left view line .
ZMIN=0
ZMAX =100
44

TABLE 52 LOOKING EAST OR WEST

LEFT VIEW ANGLE =~ RIGHT VIEW ANGLE = DRAWING ORDER

OR QUADRANT QR QUADRANT
0 deg any
1st quad Odeg
1st quad
3rd or 4th quads
180 deg any
2nd quad 0deg
1st or 2nd quads
4th quad
3rd quad 180 deg
1st or 2nd quads
3rd quad
4th quad 180 deg
2nd quad

RL = right view line
LL = left view line
XMIN =0
XMAX = 100

3rd or 4th quads

RL to XMAX

LL to XMAX
LLtoRL

if <zRL to XMAX
else LL to XMAX

XMIN to RL

LL to XMAX
LLtoRL

if <zRL to XMAX
else LL to XMAX

XMIN to LL

if <zXMIN to LL
else XMIN to RL
RL to LL

XMIN to LL
if<zXMINto LL
else XMIN to RL
RLtoLL

45

two is between 90 and 180 degrees. Quadrant three is between 180 and 270 degrees,
and quadrant four is between 270 and 360 degrees.

The final step in displaying the terrain involves defining the correct color for
the grid squares and the correct vertices for the drawing routine. When drawing the
squares in the near group, vertices of each 100 x 100 meter square along with its grid
color are used. To maintain the checkerboard appearance when drawing groups of
more than one grid square, first the left grid color is used followed by the right grid col-
or of two corresponding rows or columns. The initial color for each row or column must
be chosen to be different than the grid square next to it in the previous row or column.
If the previous row or column used the left grid square color, then the current row or
column uses the right grid square color. The opposite is true if the previous row or
column used the right grid square color. An example of how the terrain is divided into
the three groups is shown in Figure 5.17.

Since the smaller grid squares are grouped to form larger ones, the correct ver-
tex coordinates of each square must be sent to the drawing routines to display the
larger squares. This is described in detail in Appendix E.

When displaying the terrain using the distance attenuation option, holes can
appear where the groups meet. This is shown in Figure 5.18 and is caused by group-
ing the grid squares for display. By filling the holes with triangles of the same materi-
al type and polygon normal vector as the adjacent grid square, the holes disappear as
shown in Figure 5.19.

i e

o

Offset H
Position e »

A

7 'l';:ftl:‘.

grid square X \
coordinate system Near Group Mid Group Far Group

= Displayed terrain

Figure 5.17 Terrain Display Attenuation Example

47

Figure 5.18 Holes from Drawing Terrain

48

4

Figure 5.19 Filling Holes in Terrain

49

VL NETWORKING CAPABILITY

A. OVERVIEW?

Networking between two or more IRIS graphics workstations requires two dis-
tinct communication levels: the first is between the machines themselves and the
second is between the MPS process and the networking hardware/software. The first
level is achieved by creating a scparate receive process that is executed by each
MPS process that is networking. This receive process contains an infinite loop that
constantly monitors the network looking for packets with the correct address informa-
tion. When an acceptable packet arrives, a copy is placed into an area of shared mem-
ory that facilitates the second level of communication.

The shared memory area is 1024 bytes long and is the only method of communicat-
ing between the MPS process and the receive process. By using the two levels of
communications, each MPS process can send messages informing other MPS pro-
cesses of significant events and can receive messages from other MPS processes.

B. MESSAGES VERSUS PACKETS
For the purpose of this study, the following definitions of the terms message and
packet apply:

* MESSAGE: A message is the concept of needing to inform all other networked
processes of an event. An example of an event is when a user changes the
speed of the platform he is driving. All other processes need to know the new
speed in order to correctly display that platform in their simulation.

l

2The files that contsin all the networking functions are network.c, check_for_packets.c, and net-
work_receive.c. Network.c and check_for_packets.c contain all functions used by the MPS process and
network_receive.c is the receive process that constantly monitors the network. All these files use the
header file network.h.

. "
'4
L

’

PACKET: A packet is a highly structured collection of characters, consisting of
two parts: header and body. The header contains all the information necessary
to identify the type of packet, and the body contains all the data fields that are
required for that type of packet.

C. MESSAGES

1. Generation Methodology
Knowing when to generate a message was one of the biggest problems in

designing the networking system. The following events were chosen to be the ones

that require a message to be sent:

Send an init message when initially entering network mode
Send an answer message when responding to an init message

Send one update message for every local platform whenever any one of two
events occur: The user has selected (from the main menu) a platform to operate,
or the user has changed all the platforms’ speeds from one of the operating
menus

Send an end message when quitting the simulation, or after adding or deleting
any or all platforms

Send a zero velocity message whenever an operating menu is displayed, so
that all the local platforms stop moving on all other simulations, and then send a
normal velocity message when finished selecting from the menu

Send an update message for the platform that is being driven whenever the user
makes a change to the course, speed, or altitude

Send a lock on message after locking onto a platform that is from a non-local
simulation, and send a Jock off message when disengaging from it

Send a destroy message if a local FOGM missile has destroyed a non-local
platform

Send a crash message if a non-local platform has crashed into any other plat-
form, wreck or obstacle

2. Types
After we decided what events needed to gencrate messages, the formal types

of messages needed to be defined. The header file, network.h, defines the different

types of messages that are available as follows:

51

other MPS processes are currently networking. The only information that must be

sent is the fact that it is an initialization message.

pieces of information need to be sent as follows:

This message is generated when the course, speed or altitude of a platform is

changed and must contain the following information:

INITIALIZATION
ANSWER
UPDATE

ALL
ZERO_VELOCITY
NORMAL_VELOCITY
END

LOCK_ON
LOCK_OFF
DESTROY
CRASH

The initialization message is sent when the simulation wants to find out if any

The answer message is sent in response to an initialization message. Three

The local simulation’s base identification number. This number is the beginning
of a block of 10,000 integers that are used to uniquely identify the platforms from
this simulation. The non-local simulation will add 10,000 to this value to get its
base identification number

The x_grid for the operating area
The y_grid for the operating area

The update message is specifically about the platform that is being driven.

The network identification number of the platform
The platform type code

The x location of the platform

The z location of the platform -
The X rotation of the platform (tilt) ‘#
The Y rotation of the platform (ang)

52 B

e The Z rotation of the platform (inc)

* The velocity of the platform

* The altitude of the platform

» The course in degrees of the platform

The all message must contain the same information as the update message,
however there must be a message for every platform in the local simulation.

The zero velocity message is similar to the all message except that the
velocity field is changed to zero. The normal velocity message is identical but the
correct value for the velocity is sent instead of zero.

The end message has only one field which contains the base_id_number for
the simulation.

The lock on and lock off packets are very similar. The only information that
must be sent is the tracked_net_veh_id of the platform that was just locked onto or
released.

The destroy and crash messages also contains only one field. This field con-
tains the destroyed_net_veh_id or the crashed_net_veh_id of the destroyed platform.

D. PACKETS

As previously stated, a packet is a highly structured collection of characters, con-
sisting of two parts: header and body. The header contains all the information neces-
sary to identify the type of packet, and the body contains all the data fields that are
required for that type of packet.

1. Format
A packet is transmitted as a sequence of characters (a string). Therefore, any
information that must be sent that is not of type character (such as integer, short,
float, or double) must be converted to a string before it can be inserted into a packet.
The system function sprintf() is used to convert integers and shorts to a string. For
numbers of type float and double, the number must first be converted to an integer

53

type. Since doing a straight conversion to integer (truncation) would destroy every-
thing after the decimal point, each float or double is multiplied by a constant called
PACKING_FACTOR. The value for the PACKING_FACTOR is located in the head-
er file network.h and is currently 10,000. When a packet is received, the PACK-
ING_FACTOR is divided out of the appropriate fields of the packet.
a. Header

The header for every packet is fixed at 50 characters long. The first four
characters repeat a unique token defined for the particular packet type. The different
tokens are as follows:

* Initialization packet token
* Answer packet token

¢ Update packet token

¢ End packet token

* Lock on packet token

¢ Lock off packet token

» Destroy packet token !
¢ Crash packet token &

>RAP *

The middle part of the packet is a human readable description of the pack-
et owner and type. For example: "MOVING PLATFORM SIMULATOR destruct
packet." The only change in this part of the header from one packet to another is the
word that describes the type. The last part of the header is a repeat of the unique
packet token. Enough of these tokens are placed at the end of the header to pack it to
50 characters long. All the legal headers are listed in Figure 6.1.

b. Body
The body of a packet is strictly deﬁn?d for each type. Table 6.1 outlines

these definitions.

.tﬁr_ N

"s#s+ MOVING PLATFORM SIMULATOR initial packet **#+*"
"#i# MOVING PLATFORM SIMULATOR answer packet #HiH#"
"@@@@ MOVING PLATFORM SIMULATOR update packet @@@@@"
"$$$$ MOVING PLATFORM SIMULATOR end packet $$$$$3$$$"
"111! MOVING PLATFORM SIMULATOR destruct packet {!!"
"%%%% MOVING PLATFORM SIMULATOR lock on packet %% %"
"AAMA MOVING PLATFORM SIMULATOR lock on packet MAA"

"&&&& MOVING PLATFORM SIMULATOR crash packet && & & &&"

Figure 6.1 Packet Headers Available to MPS

2. Examples

An initialization packet is always the same and does not contain any infor-

mation fields as follows::

s#++* MOVING.PLATFORM.SIMULATOR .initial packet. ****

A typical answer packet contains three information fields as follows:

{

#HH# MOVING.PLATFORM.SIMULATOR .answer.packet. #t#H#

55

i TABLE 6.1 PACKET BODY DEFINITIONS

E PACKET NUMBER FELD DATA HELD
IYPE OFFIELDS CONTENTS TYPE WIDTH yyues

INIT 0

ANS 3 base_id_number int 20

x_grid short 20

y_grid short 20

UPDATE 10 platform®->net_veh_id int 20

platform->t short 20

platform->x Coord 20

platform->z Coord 20

platform->tilt short 20

platform->ang float 20

platform->inc short 20

platform->vel float 20

platform->alt float 20

platform->cse float 20

END 1 base_id_number int 20

LOCK_ON 1 tracked_net_veh_id int 20

LOCK_OFF 1 tracked_net_veh_id int 20

DESTROY 1 destroyed_net_veh_id int 20

CRASH 1 crashed_net_veéh_id int 20

*Platform is a pointer to the Yehicle structure of the platform concerned.

s6 -y

An update packet is the most complex packet because it contains ten informa-

tion fields as follows:

@@@@.MOVING.PLATFORM.SIMULATOR .update.packet @@@Q@@
10001.... .329098518............ 38966032........... 10, 20943

A typical end packet contains one information field as follows:

$$$$. MOVING.PLATFORM.SIMULATOR.end.packet. $$$$$$$$10000...............

Lock_on, lock_off, destroy, and crash packets each contain one information

field as follows:

% %% % .MOVING.PLATFORM.SIMULATOR.lock.on.packet. %% %%10001...............

AAA MOVING.PLATFORM.SIMULATOR .lock.off.packet. A 10001...............

E. SHARED MEMORY

UNIX System 5.0 has systern commands that allow multiple processes to share a
common block of memory. Through the use of this capability, the networking of MPS
processes is possible. The file network.c contains the functions that create the shared
memory area and attach to it. The file network_receive.c contains the separate
receive process that attaches to the same shared ;ncmory segment. The particulars of
the content of the file network_receive.c are discussed later.

If networking is selected by the user, MPS calls the function network() as follows:

57

network(NETWORK_SETUP)

This function call causes the function shared_memory_semaphores_and_
network_setup() to be called which calls the system function shmger() as follows:

shmget(SHARED_MEMORY_KEY, SHARED_MEMORY_SIZE,
0777TIPC_CREATE)

The manifest constants SHARED_MEMORY_KEY and SHARED_MEMORY_
SIZE are defined in the header file network.h which is part of the MPS system.
IPC_CREATE is defined in the system header file sys/shm.h. This call to shmger()
retumns the shared memory identification number for the newly created shared memo-
ry segment.

The next system function that is called is shmat(). This function returns a pointer
to the first memory location of the shared memory segment. This address is used to
read and write information out and in to the shared memory segment. The last opera-
tion that the function shared_memory_semaphores_and_network_setup() performs in

relation to shared memory is to clear all the memory locations to zero.

F. NETWORK INITIALIZATION

The physical interconnection between different IRIS graphics workstations in the
Graphics and Video Laboratory is through an Ethernet local area network. The func-
tion shared_memory_semaphores_and_network_setup() initializes the network inter-
face by calling the function gerbroadcast() which is located in the same file.

The first function that getbroadcast() calls is getservbyname() which is a system
function that looks in the system file /etc/services for the line of code in Figure 6.2. If
this line of code is present, then a pointer to a su|ucturc containing the line of code is

returned. If this line of code is not present, then interprocess communication can not

58

Wo——

udpbrdcst 2000/udp broadcast

Figure 6.2 Line of Code That Must Appear in the System File /etc/services

occur. Therefore to implement networking on an IRIS workstation, a super user must
add the line to the file /etc/services.

The next function called is socket(). This function returns a value of type int that is
a descriptor or number of the socket that will transmit and receive the packets for
MPS.

Next, the function setsockopx) configures the socket for the type of
communications that MPS needs. In particular, the socket must be set up for
broadcast communications.

The function bzero() is called to clear the structure containing the socket address-
ing information. Then the correct address information is placed in the structure by
three assignment statements.

Finally, the function ioctl() puts the socket into non-blocking mode so that the
process looking at the socket for packets does not have to wait if no packet is pre-
sent. This prevents the process from becoming blocked.

G. RECEIVE PROCESS

The receive process is constantly monitoring the Ethernet looking for packets with
the correct header information. When a correct packet arrives, its contents are placed
into a local string called message that is as large as the shared memory segment.
Then the message is copied into the shared memory segment by the strcpy() function.
The algorithm for the receive process is outlined in Figure 6.3.

59

while(TRUE)
{

wait_for_a_packet(message);

/* Put the received message into the shared memory area */
strcpy(address,message);

Figure 6.3 Algorithm For Receive Process

VII. PERFORMANCE EVALUATION OF MPS

One objective of our research is to evaluate the performance of the Moving Plat-
form Simulator on the IRIS 4D/70GT, a high performance graphics workstation. Mea-
surements were made during the main event loop while the platforms and terrain
were being displayed in the map window. First let us review the complexity of the
drawing being displayed. The process includes:

¢ Z-buffering
« infinite light source
* equations to update each platform’s position

* equations to update each platform’s grid position, insertion, and deletion in the
appropriate linked list

e computations of the look direction

e computations of the left and right view angles, total field of view area, and offset
position

» computations to determine which grid squares to display, and where the bound-
aries occur between the near, mid, and far drawing groups

e computations for collision detection

¢ activation of the perspective view of the world

¢ activation of the lighting model

 the display of each polygon of the terrain and platforms in view

 the display of the updated indicator information in the menu, navigation, and indi-

cator windows

The Moving Platform Simulator is totally different from any of the previous 3D
simulators developed in the Graphics and Video Laboratory at the Naval Postgradu-
ate School. Many new options and capabilities are incorporated in this simulation,
most of these due to the additional capabilities of the IRIS 4D/70GT.

Some new options degrade performance. The most noticeable of these is the deci-
sion to draw the terrain all the way from the offset position to the edge of the map
within the field of view lines. This is in contrast to drawing just 2000 meters from the
driven position as in earlier simulations. Although the terrain is grouped and drawn

61

TR Y~

for distance attenuation, performance is decreased since more terrain is drawn upon
each update.

A. BENCHMARK PERFORMANCE

The MPS simulator is much more sophisticated than either the VEH or VEH I
simulators, and cannot be considered in the same grovp. However for completeness,
two of the original tests were performed on MPS to measure its performance. (See
Chapter II and Tables 2.1, 2.2, and 2.3 for the results of the tests on the older
simulators) The first test involved one vehicle on the terrain and the second test
involved eight vehicles within the field of view of a jeep. Table 7.1 shows the
performance for MPS for these tests on the IRIS 4D/70GT. The results of these tests
show that MPS is running at about the same speed as VEH I does on the IRIS
4D/70G. However, the pictures are better and the capabilities are greater in the
Moving Platform Simulator.

Since MPS is a new simulator, new benchmarks are needed to measure its perfor-
mance on graphics workstations. Quantities such as polygons per frame and frames
per second are important in measuring the performance of visual simulations.

The case chosen to conduct the performance measurements of MPS is one in
which a single missile is operated with as much terrain as possible in the field of
view. The missile is flown at its maximum altitude of 1500 meters above the grid
square (35,5) looking northeast. The view from the missile looking down on the terrain
from a high altitude allows the terrain grid squares to be drawn with a somewhat con-
sistent polygon size. Both the detailed and distance attenuation drawing options for
90 degree and 10 degree field of views were analyzed. Table 7.1 also shows the
results from these cases using an IRIS 4D/70GT. These performance measurement
values should be used as a benchmark for future evaluations.

62

TABLE 7.1 MPS PERFORMANCE MEASUREMENTS

I DE

ZOOM POLYGONS FRAMES
PER PER

PLATFORM ANGLE FRAME SECOND
ONE VEHICLE 55 763 8
ONE VEHICLE 15 403 14
NINE VEHICLES 55 1086 6
NINE VEHICLES 15 722 8
MISSILE 1500m 90 19801 <1
MISSILE 1500m 10 3387 2

DISPLAYING A ATED TER

ZOOM POLYGONS FRAMES
PER PER

PLATFORM ANGLE FRAME SECOND
ONE VEHICLE 55 607 9
ONE VEHICLE 15 393 15
NINE VEHICLES 55 940 7
NINE VEHICLES 15 680 9
MISSILE 1500m 90 4152 2
MISSILE 1500m 10 ‘ 816 7

63

VIII. SYSTEM EVALUATION OF MPS

A. SYSTEM LIMITATIONS

1. Networking
Whenever either process wants to access the shared memory area, no check
is made to insure that the other process is not also accessing the area. Potentially,
this problem can cause packets to be lost or corrupted. A logical improvement to MPS

would be to add semaphores to control access to the shared memory area.

2. Collision Detection
The current implementation of collision detection is very time intensive and
inefficient. The algorithm that is used compares the first platform with all the rest, the
second platform with all but the first, the third platform with all but the first two, etc.
A logical enhancement to MPS would be to improve this algorithm so it is more intelli-

gent and faster.

3. Terrain Display

The terrain that is displayed within the field of view is divided into three
groups. The near group, which extends from the offset driven position and is a function
of the field of view, contains each 100 x 100 meter squares. The mid group begins
where the near group ends and extends for 2000 meters. Here the squares are dis-
played with four 100 x 100 meter squares drawn as one square.

The breakpoints for the groups are determined by the cosine of the look direc-
tion and the distance desired. For example the stppping point for the near group can
be given by:

xstop{NEAR] = xstart{NEAR] + cos(lookang) * num_poly_near

The equation works well when the look direction is exactly 0, 90, 180, or 270
degrees since only complete columns are drawn when looking cast or west, and com-
plete rows are drawn when looking north or south. However, if the look direction is
45 degrees for example, more terrain is drawn within the group than desired. Figure
8.1 shows what terrain should be drawn in each group, while Figure 8.2 shows what
is actually drawn.

This limitation in the display algorithm means that the performance can be
increased if the terrain can be grouped for display as shown in Figure 8.1. However
problems arise if complete rows or columns are not displayed in the same group. The
algorithm would have to be modified to track where the breakpoint occurs within the
group. Also, holes which are now seen and comrected on group boundaries would
occur within the group. We feel the extra effort to display the terrain as given in Fig-
ure 8.1 would further complicate the algorithm, and the benefits do not justify the
expense.

Another limitation with the display algorithm is the representation of the vehi-
cles on the larger grid squares. Recall each vehicle is drawn on the terrain based on
the grid square’s orientation beneath it. If the terrain is inclined so is the vehicle to
give the appearance the vehicle is moving over the terrain. When the 100 x 100 grid
squares are grouped to form larger squares for display, the characteristics of the ter-
rain change as the large square is drawn. The vehicles, however, are still drawn as
they would have appeared in their original grid square.

Correcting this limitation would involve recomputing the vehicles orientation
based on the larger grid square. Since the vehicles in this group are at least 2000
meters from the driven platform, it was decided to draw the vehicles correctly was not
worth the extra effort needed. |

The final terrain limitation concerns the color chosen for the larger grid
squares. When the four 100 x 100 grid squares are grouped and drawn as one square,

four possible colors exist for that square. To simplify the choices the color of the first

65

Offset
Position

\

NG

Z
, X
grid square
coordinate system
= Near Group
= Mid Group
B - o 1
{
Figure 8.1 How the Terrain Should be Displayed q
o '

Lt ot o e g

e

Offset
Position

\

, X
grid square
coordinate system

Near Group

Mid Group

= Far Group

Figure 8.2 How the Terrain is Displayed

67

100 x 100 grid square is used for the entire larger square, unless the checkerboard
effect is violated as described earlier. If this occurs, the color of the 100 x 100 grid
square directly next to the first one is then used. This means some colors may be
seen in the small 2D map in the navigation window but not drawn in the terrain dis-

play of the map window.
B. FUTURE CAPABILITIES

1. Additional Platform Types
Currently there are five platform types available in the Moving Platform Simu-

lator. These platforms are as follows:

e Tank
* Truck
* Open jeep

» Covered jeep
* FOGM missile

Adding additional platforms is not necessarily an easy task since many rou-
tines would need to be created or modified. Appendix D outlines the steps necessary
to add additional platforms to MPS.

2, Enhanced Lighting and Shading

Real-time lighting of the platforms was implemented in the Moving Platform
Simulator. Material types and color values were chosen to make the platforms appear
as realistically as possible, however, more work is needed to improve their
appearance. Currently all the outside polygons of each platform have the same
material type. Perhaps shading certain portions of platforms differently would improve
their appearance. |

No work was done exploring the capabilities of the alpha buffer of the lighting
model. This could be used to give a translucent effect for the missile’s smoke trail or

wreck’s flame. Finally, fake shadows could be added using scaling and half tone grey

68

e

polygons. These improvements must be weighed against the decrease in execution

time to determine if they are feasible.

3. Realistic Platform Dynamics

No attempt is made to simulate real-world moving platform dynamics in MPS.

Dynamics that could be added to the simulation, however include the following items:

Human forms inside platforms that appear to be operating them
Speed limitations, both forward and backward, for ground platforms
Minimum speed (or fixed speed) of the FOGM missile

Cab vibration and the bumpy way platforms actually behave
Maximum grades that a platform can travel up and down

Platform "tip over" angles

Braking effects that could take into account momentum, inertia, etc.
Brake lights that illuminate when brakes are applied

Headlights that actually light the terrain in front of them

Neutral steer capability of tanks (ability to turn while stationary)
Realistic steering (instead of only a direction control that responds instantly)

Realistic collisions (a tank would destroy a jeep but not be destroyed itself, and
two tanks colliding would randomly destroy each other or both, etc.)

Realistic interiors of ground platforms (steering wheels, dashboards, instrument
clusters, seats, pedals, etc.

Windows that can be seen with reflections, smudges, etc.

Adding any or all of these dynamics would decrease the speed of the simula-

tion which is the primary reason they are not implemented on this version of MPS. If

these improvements are made, they must be weighed against the decrease in execu-

tion time to determine if they are actually desired.

4. Intelligent Platforms j

No attempt is made to integrate the Moving Platform Simulator with any type

of Artificial Intelligence (AI) machine. However, since networking mode allows any

machine connected to the Ethernet to receive the broadcast packets from MPS, con-

trolling a platform from another machine is not difficult. An expert system that can

69

T ———v -

TR

make decisions about the speed and direction of a platform is already under considera-
tion {Ref. 11).

5. Dynamic Operating Area
The original versions of the FOGM and VEH simulators restricted the operat-
ing area to 10x10 kilometers. This restriction has proliferated through all subsequent
versions of VEH, VEH II, and MPS. If this restriction were removed, users would not
have to select a 10x10 kilometer area but would be able to place platforms anywhere
on the 35x35 kilometer map. This would simplify the user interface and make the sim-
ulation a little more streamlined.

6. Use of Defense Mapping Agency (DMA) Type II Digital Terrain
Elevation Data (DTED)
The terrain database that MPS currently uses is not in a standard format.
Most digital terrain elevation databases available in the military are in the standard
DMA type 1I format. Modifying the routines that read the elevation data would enable

MPS to accept data for almost anywhere in the world.

C. FUTURE MACHINES

The Moving Platform Simulator was developed on a IRIS 4D/70GT workstation,
which was Silicon Graphics’ most advanced workstation at the time of program devel-
opment. Now specifications for even more advanced workstations are available.
These units will become available in the near future and should increase the capabili-

ties of simulations like MPS.

1. SGIIRIS 4D/70GTX !

The IRIS 4D/70GTX system contains hardware arranged in a new architec-
tural design that should increase the computing power of the system extensively.
This unit contains two 16.7 MHz RISC processors along with two floating point
coprocessors. Disk capacity is anywhere between 380 MB to 9.6 GB of space. Any

70 .

.

IRIS 4D system can be upgraded to the 70GTX version with minimal changes [Ref.
12:p. 1].

The 70GTX is rated at 20 MIPS and should be capable of producing 100,000 Z-
buffered four-sided, Gouraud shaded, Phong lighted polygons per second. The addi-
tional processor and new architectural design will improve system performance [Ref.
12:p. 2].

2. SGIIRIS 4D/240GTX

In the near future Silicon Graphics should begin delivery of their next genera-
tion of workstations. The 240GTX contains four CPUs, each operating at 25 MHz.
The power of the new processors should provide increased performance in both tech-
aical computations and graphics processing [Ref. 13].

The 240GTX should be fully compatible with applications previously developed
on IRIS GT workstations. Its four processors should allow even more computations
to be performed within real-time 3D simulations like MPS. Currently our mobility
expert system is forced to be executed on another processor and interfaced over a
network. Perhaps using a 240GTX workstation, one processor could be used for these

computations while other processors could execute the simulation system. [Ref. 13]

71

IX. CONCLUSIONS

This study originated from our desire to provide a meaningful graphics application
as a benchmark for high performance graphics workstations. In order to accomplish
this goal, we needed to extend the capabilities of our previous 3D visual simulators,
such simulators being the applications paradigm. We then needed to provide full
explanations of the operations involved in that simvlator, both computationally and
graphically.

One of the major changes from our previous simulators that we made for MPS
was the utilization of Z-buffering for all hidden surface elimination. Previous simula-
tors relied upon a scanline hidden surface elimination algorithm performed in the CPU.
The scanline algorithm greatly complicated the simulator’s software and made it less
supportable over the long run. It turns out that selecting Z-buffering for all hidden sur-
face elimination at this time is fortuitous as Z-buffers have just become fast enough
to beat our older scanline algorithm.

An additional benefit of utilizing Z-buffering is that we are now exhausting a
graphics capability and getting meaningful numbers of our own that we can now com-
pare to numbers the manufacturers are citing. This alone is a significant addition to
the graphics workstation benchmarking literature.

Another change we made to our previous simulators was to use the newly avail-
able lighting and Gouraud shading capabilities of our workstations. We did this by
adding into our system an ad-hoc, somewhat realistic model for the sun and its move-
ment during the day. We did this because on the IRIS 4D/70GT an infinite light source
with an infinite viewer is free timewise when Z-buffering is turned on.

Overall we have used our 3D visual simulator to push the IRIS 4D/70GT to its
limit. It performs acceptably but we certainly want it faster. We expect that to happen

with soon to be available hardware. When that faster hardware arrives, we will again

72

T ' Y“-i

W W

benchmark it with MPS with the hope that perhaps what we do will provide a more

meaningful graphics workstation comparison than what has been previously been

available.

73

APPENDIX A USER INTERFACE

The user interface of any application program must be designed so that novice and
experienced users alike can effectively operate the program with little or no help from
user’'s manuals or other users. A thorough and efficient design of command line

options, popup menus, dials, and a mouse achieves this.

A. COMMAND LINE OPTIONS?
MPS currently has three options available from the command line.

+« Network mode
*» Test mode
» Silent mode

Selection of the network mode activates the networking capabilities of the pro-
gram. If one or more MPS processes are operating on different machines, then they
will be able to share information regarding the other platforms. When a platform
changes course, speed or altitude (FOGM only), a broadcast packet is sent to all oth-
er MPS processes and the appropriate platform’s information is updated.

Selection of test mode bypasses some of the cosmetic portions of the program.
Currently, the only part that is bypassed is the opening billboard sequence.

Selection of silent mode tums off the bell that rings to indicate acceptance of input
from the user. This option is useful for demonstrations when the ringing would inter-

fere with a verbal explanation of the program.

3The code that processes the command line arguments is contained in the file decode _arguments.c.

74

B. POPUP MENU SYSTEM*

Popup menus are the primary source of user input into the program. There are cur-
rently 24 different popup menus that are used in various parts of the simulation. If a
selection in a menu is not allowed or meaningful when the menu is displayed, the
selection is displayed in lower case. Otherwise the selection is completely uppercase.
We did not omit disallowed selections so that the menus always appear in the same
order and format every time. If we were to climinate disallowed selections, users
would tend to be overwhelmed by the number of different menus. In fact, of the 24
menus in the system, only 13 are really unique. A detailed explanation of each menu

follows:

1. Opening Menus
There are two menus that make up the opening menu set. These menus are

called OPENING_ONE and OPENING_TWO. Each of these menus contain the

same four selections as follows:

GO TO NEXT INTRODUCTION PAGE
GO TO SELECT AREA MENU

EXIT THE PROGRAM

ENTER 4SIGHT (RESIZE OPTIONS)

OPENING_ONE allows the user to sclect any one of these options but
OPENING_TWO disallows the first option. OPENING_TWO is displayed if the

user is currently looking at the last introduction page.

t

4The code for defining all popup menus is contained in the file makepopups.c. Code for display-
ing and processing menu selections is contained in the following files: do_main.c, do_main_l.c,
do_main_2.c, do_main_3.c, do_main_d4.c, do_driving menu.c, do_flying_menu.c, do_change_speed.c,
do_intros.c, do_quitting.c, do_select_area.c, do_the_add.c, do_the_defaults.c, do_the_delete.c, and

do_the_select.c.

75

The first selection allows the user to toggle through the predefined set of intro-
duction screens. These screens give some history behind the evolution of the simula-
tor and give credit to those individuals and organizations that have contributed to its
development.

If the last introduction page is being displayed or the user wishes to bypass
the introduction pages, the GO TO SELECT AREA MENU selection will do just that.
To exit the program, the user must select EXIT THE PROGRAM and a small menu
will be displayed with the following selections:

* RETURN TO WHERE YOU WERE
 REALLY QUIT

If the user desires to resize or move the simulation’s windows, the option
ENTER 4SIGHT (RESIZE OPTIONS) will allow him to accomplish it. After selecting
the option, the windows will be cleared to white and the user can click on the menu

bar and move or resize as desired.

2. Select Area Menus
There are two menus that make up the select area menu set. These menus
are called SELECT_AREA_ONE and SELECT_AREA_TWO. Each of these menus
contain the same eleven selections as follows:

« SELECT AN AREA OF THE MAP
« GO TOMAIN MENU

« EXIT THE PROGRAM

« ENTER 4SIGHT (RESIZE OPTIONS)

« COLOR SCHEME - BROWN RAMP

« COLOR SCHEME - MULTIPLE COLORS

« COLOR SCHEME - GREY RAMP '
« COLOR SCHEME - RED RAMP
 COLOR SCHEME - GREEN RAMP

« COLOR SCHEME - BLUE RAMP

+ GO TO INTRODUCTION SCREEN

76 .

L

il

| .

k SELECT_AREA_ONE allows the user to select any one of these options but
SELECT_AREA_TWO disallows the first option. SELECT_AREA_TWO is dis-
played if the user is not the first simulator to select network mode. If this user were
: to select a different area to operate in while networking, there would be no correlation
h between platforms from other processes and the terrain area the user was operating
in. This is why the first simulation to enter networking is allowed to select an area of
the map in which to operate.
Selecting GO TO MAIN MENU will take the user to the main menu which is
the next logical place to go after selecting a location to operate.

The color scheme selections change the way the terrain is colored. Each color
scheme has eight different colors that are based on the elevation at that location. The
simulation actually uses 16 colors to create a checkerboarding effect, however the
user is only shown the eight primary colors in the color ramp.

The last selection allows a user to return to the introduction screens if he

desires.

3. Main Menus
There are four menus that make up the main menu set. These menus are
called MAIN_ONE, MAIN_TWO, MAIN_THREE, and MAIN_FOUR. Each of these
menus contain the same eight selections as follows:

« PLACE DEFAULT SET OF PLATFORMS

* ADD A PLATFORM

* DELETE A PLATFORM

» SELECT A PLATFORM TO OPERATE

* EXIT THE PROGRAM '
» ENTER 4SIGHT (RESIZE OPTIONS)

* SAVE PLATFORMS TO A FILE

» SELECT ANOTHER AREA OF THE MAP

77

MAIN_ONE is the first menu that is displayed after selecting an area of the
map. Since there are no platforms displayed at this point, the delete, select and save
options are disallowed. After adding as few as one platform, MAIN_TWO is dis-
played which allows all selections on the menu. MAIN_THREE is displayed only
% when the act of adding default sets of platforms would exceed an arbitrary limit on the

number of platforms allowed in the simulation at any one time. MAIN_FOUR is dis-
played when the limit on the number of platforms displayed has been reached.

Selecting the first option (PLACE DEFAULT SET OF PLATFORMS) will
_ display another menu called DEFAULT_MENU. This menu contains 6 selections as
' follows:

+ ENTER THE FILENAME FOR YOUR PLATFORMS
+ CONVOY - 10 GROUND PLATFORMS

« COCNVOY - 10 GROUND & 1 FOGM PLATFORM

+ JEEPS - 20 IN A ROW

« DR.ZYDA’S CONVOY

» DR.ZYDA’S WILDMAN DEFAULTS

If the user selects the first option, a small window is displayed on the screen
which prompts the user for the filename. If valid information is found in the file, the
appropriate platforms are added to the simulation. The main menu is then redisplayed.

Selection of any other option on the DEFAULT_MENU results in the addition
of predesignated platforms in predesignated locations. These selections are useful for
demonstration purposes and for persons interested in getting some platforms on the
screen very quickly.

The information for the default sets of plai:forms is contained in data files that
are read when indicated by a menu selection. The'complete path for these files is con-
tained in the header file files.h.

78

The next option on the main menu is ADD A PLATFORM. Selecting this
option displays the following menu:

« ADD A COVERED JEEP
» ADD AN OPEN JEEP

« ADD A TRUCK

» ADD A TANK

+ ADD A FOGM MISSILE
+ ADD AN OBSTACLE

If a moving platform is selected (jeep, tank, truck, or FOGM), menus are dis-
played requesting an initial speed and direction for the platform. If an obstacle is
requested then the speed and direction menus are bypassed. The FOGM missile
defaults to an initial altitude of 200 meters above the terrain at the point where it is
placed. After completing the selections, an icon is placed on the screen that resem-
bles the selected platform or obstacle. The user can then move the icon with the
mouse and place the platform by clicking the right mouse button. After placing the icon
on the screen, the main menu is displayed once again.

Selecting the DELETE A PLATFORM option displays the following menu:

« DELETE A SINGLE PLATFORM
» DELETE ALL PLATFORMS ON THE SCREEN

If the user wants to delete one platform, an X cursor is displayed and the user
can click on the desired platform. If the user wants to delete all the platforms on the
screen, the following menu is displayed:

« NO, DO NOT DELETE ALL THE PLATFORMS
e YES, DELETE ALL PLATFORMS '

{
The appropriate selection from this menu either cancels the operation or exe-

cutes it. This menu prevents a user from deleting vehicles that he may not really want

to delete.

79

The next selection from the main menu is SELECT A PLATFORM TO OPER-
ATE. If the user selects this option, the foliowing menu is displayed:

» ZOOMIN TO ANY LEGAL GRID SQUARE
» SELECT A PLATFORM TO OPERATE RIGHT NOW

The zoom option is usually necessary if platforms are close to each other and
the individual icons overlap. By zooming into the 1x1 kilometer grid square, the user
can more easily select the platform he desires.

If the platform the user wants to operate is clearly visible, then the second
selection allows the user to select a platform immediately.

If the user has placed platforms on the screen and wishes to save them to a
file, then the main menu selection SAVE PLATFORMS TO A FILE accomplishes
this. A window opens that prompts the user for the filename. If the path is correct, the
platforms are saved to the file.

The last selection from the main menu allows a user to return to the

SELECT_AREA menu.

4. Operating Menus
a. Driving
There is only one menu that makes up the driving menu set. This menu is
called OPERATE_DRIVE. This menu contains the seven selections as follows:

« DO NOTHING

+ RETURN TO MAIN MENU

+ CHANGE ALL PLATFORMS’ SPEEDS

« EXIT THE PROGRAM '
» ENTER 4SIGHT (RESIZE OPTIONS)
« POP WINDOWS

e ADVANCED OPTIONS

80 .

e

The first selection is provided in case the user pushes the right mouse but-
ton and he does not desire to do anything. The second selection allows the user to
return to the main menu.

The third selection causes another menu to pop up that allows the user to
select a speed for all the platforms currently in the simulation. The allowable speeds
are from zero to 65 miles per hour. There is also a selection that will do nothing and
return directly to the simulation. Changing all the speeds is convenient when the user
wants to have a convoy of platforms proceed at identical speeds. Also, by selecting
zero miles per hour, all platforms are effectively frozen and their configuration can be
studied by viewing them from a FOGM missile or other platform,

The POP WINDOWS selection brings the four windows of the simulation
into view if any of them are obscured from view by other processes that are running
on the machine.

The ADVANCED OPTIONS selection brings up the following menu:

+ TOGGLE SINGLE/DOUBLE BUFFER MODE
* TARGETING MODE TEST (ONCE)
* TERRAIN DRAWING OPTIONS

The first selection toggles the graphics hardware between singlebuffer and
doublebuffer modes. In doublebuffer mode, all drawing is done in a separate area of
memory from the display memory. When the function swapbuffers() is called, the
pointer to this area and the pointer to the display buffer are switched, thereby swap-
ping the new picture for the old picture. This is how smooth motion is simulated. If a
user is interested in what order the individual picture elements are drawn on the
screen, then by selecting singlebuffer mode, he fan see the pictures while they are
being drawn.

Targeting mode test allows a user to see how the simulation determines if
a target is in the crosshairs of the FOGM missile during targeting. After selecting the

option, the next time targeting is attempted, the view will be cleared to white and all

81

visible platforms will be drawn without lighting, shading, or hidden surface removal.
The resulting picture is displayed for three seconds and then normal operation com-
mences. This option is reset each time it is used.

The TERRAIN DRAWING OPTIONS option is a roll-off menu. When the
user moves the cursor towards the right side of the words TERRAIN DRAWING
OPTIONS, the following menu is displayed:

* DETAILED TERRAIN
« DISTANCE ATTENUATION - NORMAL
« DISTANCE ATTENUATION - BOUNDARIES DISPLAYED

The default terrain drawing option is DISTANCE ATTENUATION - NOR-
MAL. This drawing option establishes three zones in front of the driven platform and
reduces the number of polygons that are displayed in each zone. The zone closest to
the viewer is displayed with 100x100 meter polygons, the greatest resolution avail-
able. The next zone uses 200x200 meter polygons and the last zone uses 400x400
meter polygons. The selection DISTANCE ATTENUATION - BOUNDARIES DIS-
PLAYED draws the boundaries between zones in cyan so the user can see where
they are. The selection for DETAILED TERRAIN draws 100x100 meter polygons
throughout the three zones. Users notice a significant decrease in the frames per sec-
ond rate when this option is selected. If singlebuffer mode is also enabled during
detailed terrain drawing, the algorithm that is used to draw the terrain becomes more
obvious.

b. Flying

There are three menus that make up the flying menu set. These menus are
called OPERATE_FLY_ONE, OPERATE_FLY_TWO, and OPERATE_FLY
_THREE. This menu contains the seven selections as follows:

* DO NOTHING
* DETACH/RESUME OPERATING
« RETURN TO MAIN MENU

82

R |

e ————

e e —

» CHANGE ALL PLATFORMS’ SPEEDS
» EXIT THE PROGRAM

» ENTER 4SIGHT (RESIZE OPTIONS)

* TOGGLE TARGET TRACKING

e ADVANCED OPTIONS

Many of these options are exact duplicates of the options on the driving
menus. However, the DETACH/RESUME OPERATING and TOGGLE TARGET
TRACKING options are different.

The DETACH/RESUME OPERATING option allows a user to detach the
cursor from the simulation while flying. During flying, the cursor is restricted to the
simulation window because the mouse controls where the nose camera of the FOGM
missile is pointed. Using this option, the user can point the camera where he wants to
look and then free the mouse. To return to the simulation, the user must select the
same option once again.

If the user has a ground platform in the crosshairs of the FOGM missile
and he wants to target it, he must make the TOGGLE TARGET TRACKING selec-
tion from the menu. If a platform was in the crosshairs, then the missile will lock on
and track the platform. If the user wants to release the missile from tracking mode
then another selection will turn off target tracking.

C. Dials’
The dial box that is supplied by SGI has eight dials numbered from zero to seven.

They are organized in two columns and four rows. The numbering scheme is from left

(
5The code for initializing the dials is contained in the following files: setcontrols.c and setcon-

trols_fogm.c. Code for handling input from the dials’ movements is contained in the following files:
handlecontrols.c, handlecontrols_fogm.c, and handlecontrols_partial.c.

83

to right, bottom to top so the lower left dial is zero, the lower right is one and the
upper right is seven.

The Moving Platform Simulator uses these dials in basically two configurations;
one for driving and one for flying.

1. Driving Dial Configuration
The dials for driving are configured as follows:

¢ DIAL 0 - Course
* DIAL 1 - Viewing Direction
* DIAL 2 - Speed
 DIAL3- Tilt
* DIAL 4 - Hour of the Day
¢ DIAL 5 - Month of the Year
* DIAL 6 - Not Used
¢ DIAL 7 - Not Used

The course is the direction of travel of the platform which is displayed in
degrees. The viewing direction is the direction the driver’s head is looking left to right
in relation to the course. When the course is changed, the viewing angle changes
accordingly. Speed is the speed of the platform in miles per hour. Tilt is where the
driver is looking up and down. The hour of the day and month of the year determine
the location, color and intensity of the sun. Figure A.1 is a picture of the dial box with
the dials labeled for driving.

2. Flying Dial Configuration
The dials for flying are configured as follows:

e DIAL 0 - Course |
+ DIAL 1 - Altitude

 DIAL 2 - Speed

e DIAL 3 - Not Used

* DIAL 4 - Hour of the Day

e DIAL 5 - Month of the Year

84

COURSE VIEWING DIR

Figure A.1 Dial Box With Dials Labeled For Driving

85

 DIAL 6 - Not Used
e DIAL 7 - Not Used

Many of the dials are identical to the driving dial configuration except for alti-
tude which is self-explanatory. Figure A.2 is a picture of the dial box with the dials
labeled for flying.

D. Mouse®
The mouse has many uses throughout the simulation. Its use can be broken down
into basically four groups:

» Popup menu activation and selection
» Operating area selection

+ Platform icon placement and selection
» FOGM missile nose camera control

The mouse is used throughout the simulation to activate popup menus and to
select options. One of these options is to select an area from the large database. A
10x10 kilometer red square is displayed on the 35x35 kilometer database and the
mouse is used to move the square to the desired location. Platforms are placed and
selected on the screen with the mouse.

The nose camera of the FOGM missile is controlled with the movement of the

mouse. This gives the user very fine control over targeting and viewing direction.

6Code for handling the operations of the selections is contained in the file seloct_area_menu.c.
Code for handling platform icon placement is contained in the files do_the_add.c and addveh.c. Code
for handling FOGM missile nose camera control is contained in the files handlecontrols_fogm.c and
handlecontrols_partial.c.

86 '

- ALTITUDE

i

Figure A.2 Dial Box With Dials Labeled For Flying

87

E. Keyboard’
The keyboard is only used to accept filenames from the user. All other user input

is through the popup menus, dials, or mouse.

{

TCode for handling filename input is contained in the files do_the_filename.c and do_char.c.

APPENDIX B MODULE/FILE ORGANIZATION

The top-level function main() is located in the file mps.c. Figure B.1 illustrates
the major function calls that main() and event() make, and Figures B.2 and B.3 show
the calls for event_driving() and event_flying() respectively.

Main() (Figure B.1) is responsible for initializing many different items including
many data structures, cursors, colors, all light models, months, icons, and popup
menus. The IRIS graphics hardware and windows are also initialized. The function
eveni() is called after main() finishes initializing all these items. Evenr() does not
return to main() until the user selects an option to exit the simulation at which time
the function exit_simulator() is called.

Event() (Figure B.1) is the function that sets up everything in preparation for the
actual real-time simulation. The introduction screens, area selection queries, two-
dimensional map display, and all operations performed from the main menu (platform
addition, deletion, and selection, etc.) are completed by event() before calling either
event_driving() or event_flying().

Once the user selects a platform to operate, cither event driving() (Figure B.2)
or event_flying() (Figure B.3) is called. All platforms except the FOGM missile
cause event_driving() to be called. Each of these functions is the event loop of the
simulation. The program continuously loops through the picture generating functions
updating all platform positions and handling all user input from the mouse and dials.
When the user selects RETURN TO MAIN MENU or the platform he is operating is
destroyed, then control is retumed to eveni(). The main menu is displayed and the
loop begins again. !

Figures B.1 through B.3 do not list all the functions that main(), event(),
event _driving(), and event flying() actually call. There are many other support

89

1 1 | 1
decode_arguments define_cursors initiris setcolor_initialize
i | | |
billboard light_model_initialize init_months make_icons
| | |
makepopups event() exit_simulator
[i 1)
network do_intros display_big_map draw_box_around_current_area
[| 1 1
do_select_area read_data calc_ground_plane maketerrain
[1] 1
initialize_terrain_mat terrain_normals upvehscreen display_map
I] | il |
mapoverlay do_main setup_navwin setcontrols setcontrols_fogm
[|
event_driving event_flying

<

@

Figure B.1 Module Structure For main() and event()

network setcontrols do_driving_menu upvehscreen setup_navwin
handlecontrols check_for_packets handle_tracking explosion
collision_detection update_veh_pos update_net_veh_pos viewbounds
update_vehicle_grid update_look_pos display_nav display_indbox
drawterrain display_data display_tracked_message

Figure B.2 Module Structure For event_driving()

91

&

network do_flying_menu

upvehscreen

setup_navwin

setcontrols_fogm handlecontrols_partial

handlecontrols_fogm

check_for_packets handle_tracking

collision_detection

update_veh_pos

update_net_veh_pos viewbounds

update_vehicle_grid

update_look_pos_fogm explosion

display _nav

display_indbox_fogm

drawterrain display_data

display_slider

Figure B.3 Module Structure For event_flying()

92 \

;i

routines that have not been listed. All the support routines and a short explanation of
each are listed in Figure B.4.

Many of the files that have been discussed above require one or more header files.
Many of these header files are system files, however there are some that are not. The
following header files are specifically for the Moving Platform Simulator:

* color_scheme.h

e controls.h

e event_status.h
+ files.h

¢ flamedata.h

e globalh

* intankdata.h
* jeepdata.h

* legendh

» lightcons.h

+ lightdefs.h

* missiledata.h
* mps.h

e network.h

* openjeepdata.h
* popups.h

* rollerdata.h

* tankdata.h

* terrain.h

* tiredata.h

» trackdata.h

* truckdata.h

Each of these files contains specific manifest constants and/or data structure dec-
larations designed to support only those functions that require them. To determine
which functions require a specific header file, refer to the makefile in Appendix C.

93

h___

add_network_veh()
addnode()
addnode_net()
addveh()

arcsine()

build_array()
build_array_net()
calcwindows()
center_cursor()
center_string_map()
center_string_menu()
clearwindow()
compute_slope()
compute_start_stop()
compute_sun_location()
compute_x_bounds()
compute_z_bounds()
computeavgfps()
convert_to_dec_hr()
convert_to_hr_min()
delete_veh()
display_intro_screen()
display_legend_for_big_map()
display_legend_for_navbox()
do_capture()
do_char()
do_change_speed()
do_main_1()
do_main_2()
do_main_3()
do_main_4()
do_main_reset()
do_resize()
do_quitting()
do_the_add()

Adds a platform from a networked process.
Creates vehgrid array list.

Creates netvehgrid array list.

Adds a local platform.

Returns arcsine of input parameter.
Constructs vehgrid array list from linked list.
Constructs netvehgrid array list from linked list.
Calculates origins and sizes of windows.
Centers the cursor in the designated window.
Centers a string in the MAP window.

Centers a string in the MENU window.
Clears a window to the given color.
Computes the slope of a line.

Computes information for drawterrain().
Computes sun location based on month, hour.
Computes information for drawterrain().
Computes information for drawterrain().
Computes the average frames per second.
Converts to decimal hour.

Converts to hours and minutes.

Deletes a platform from the linked list.
Displays an intro screen in the MAP window.
Displays the legend in the IND window.
Displays the legend in the NAV window.
Handles capturing platforms to a data file.
Displays a character in the filename window.
Allows a user to change all platform speeds.
Support routine for do_main().

Support routine for do_main().

Support routine for do_main().

Support routine for do_main().

Clears all windows to black and draws 2D map.
Handles resizing selection.

Handles quitting selection.

Handles adding a platform.

Figure B4 Support Functions

94

T

do_the_defaults()

do_the_delete()

do_the_filename()

Handles adding a default set of platforms.
Handles deleting one or all platforms.
Queries the user for a filename.

do_the_select() Handles selecting a platform to operate.
drawflame() Draws the flame for wrecks (obstacles).
drawgridbox() Draws a box in the mapwin.

drawintank() Draws the tank when you are operating a tank.
drawjeep() Draws a covered jeep.

drawmissile() Draws a missile.

drawopenjeep() Draws an open jeep.

drawroller() Draws the tank rollers.

drawtank() Draws a tank.

drawtire() Draws a tire.

drawtrack() Draws a tank track.

drawtruck() Draws a truck.

drawwreck() Draws a wreck (obstacle).

error_handler() Centralized routine to handle errors.
flamenormals() Computes normals for the flame.
get_curr_fps() Gets the current frames per second.
get_mouse_xy() Finds the screen location of the mouse cursor.
gnd_level() Calculates the elevation for a platform.
gridwindows() Computes windowsx and windowsy (variables).
highlitegrid() Highlights 1x1 km grids with platforms in them.
initveh() Adds platform that is sent in the parameter list.
intanknormals() Computes the normals for the intank.
jeepnormals() Computes the normals for a covered jeep.
letter() Draws a letter in the billboard.

lightdefs() Defines materials, lights, and lighting models.

limit_cursor_pick()

Limits cursor for targeting attempt by FOGM.

limit_value() Limits a value between lower and upper bound.
loadunit() Loads a unit matrix onto the system stack.
missilenormals() Computes ngrmals for FOGM missile.

mousescreentoterrain() Converts mouse screen coords to terrain coords.
mousescreentoworld() Converts mouse screen coords to world coords.

Figure B.4 Support Functions - Continued

95

mouseterraintoscreen()
mouseworldtoscreen()
normalorient()
npoly_orient()
openjeepnormals()
placewindow_sizes()
placewindows()
popwindow()
positionwindows()
reset_tiltf()
ring_the_bell()
rollernormals()
select_grid_square()
semaphore()
set_popup_color()
set_queue()
set_unqueue()
setcolor()
setcolor_initialize()
setcursorcolor()
setwindow()
setworldcoord()
sincos()

slowturn()
switch_veh()
tanknormals()
tirenormals()
tracknormals()
trucknormals()
tot_num_ground_veh()
tot_num_veh()
vecdotp()

vecmag()

zoomin()

Converts mouse terrain coords to screen coords.

Converts mouse world coords to screen coords.
Computes normal and reorganizes vertices.

Orients polygons for backface polygon removal.

Computes normals for an open jeep.

Sets aspect, min, and max for billboard window.

Calculates and opens all windows.

Pops a window into full view.

Positions windows for winconstraints().
Resets tiltf angle after releasing track mode.
Rings the bell if not in silent mode.

Computes normals for tank rollers.

Handles selection of 1x1 kilometer grid square.
Contains semaphore operations for networking.
Sets the popup menu color.

Queues input devices.

Unqueues input devices.

Sets RGBcolor().

Initializes the color information data structure.
Sets the cursor color.

Does a winset() to the desired window.

Saves world coord for current window.

Fast approximation for sine and cosine.
Causes a platform to turn slowly to the left.
Returns a pointer to the selected platform.
Computes normals for a tank.

Computes normals for a tire.

Computes normals for tank tracks.

Computes normals for a truck.

Returns total number of ground plattorms.
Returns total number of platforms (all types).
Vector dot product.

Returns magnitude of a vector.

Displays a 1x1 kiloineter grid square.

Figure B.4 Support Functions - Continued

96

APPENDIX C MAKEFILE FOR THE MOVING PLATFORM SIMULATOR

CFLAGS =-Zg-lm-O
CFLAGSLINK = -Zg -Im -lbsd -O
CFLAGSNET = -Zg -Im -Ibsd -O

MPSOBJS1 = addnode.o\
addnode_net.o\
add_network_veh.o\
addveh.o\
arcsine.o\
billboard.o \
build_array.o\
build_array_net.o\
calc_ground_plane.o\
calcwindows.o \
center_cursor.o\
center_string_map.o\
center_string_menu.o\
check_for_packets.o\
clearwindow.o\
collision_detection.o\
compute_slope.o\
compute_start_stop.o\
compute_sun_location.o \
compute_x_bounds.o\
compute_z_bounds.o\
computeavgfps.o\
convert_to_dec_hr.o\
convert_to_hr_min.o\
decode_arguments.o\
define_cursors.o\
delete_veh.o\
display_big map.o\
display_data.o\
display_indbox.o\
display_indbox_fogm.o\

97 ,

display_intro_screen.o\
display_legend_for_big map.o\
display_legend_for_navbox.o\
display_map.o\
display_nav.o\
display_slider.o\
display_tracked_message.o\
do_capture.o\
do_change_speed.o\
do_char.o\
do_driving_menu.o\
do_flying_menu.o\
do_intros.o\

do_main.o\

do_main_l.o\
do_main_2.0\
do_main_3.0\
do_main_4.0\
do_main_reset.o\
do_quitting.o\

do_resize.o\
do_select_area.o\
do_the_add.o\
do_the_defaults.o\
do_the_delete.o\
do_the_filename.o\
do_the_select.o

MPSOBJS2 = draw_box_around_current_area.o \

drawflame.o \

drawgridbox.o\

drawintank.o\

drawjeep.o\

drawmissile.o\ !
drawopenjeep.o \

drawroller.o\

drawtank.o\

drawterrain.o\

drawtire.o\

98

AR

drawtrack.o\
drawtruck.o\
drawwreck.o \
error_handler.o\
event.o\
event_driving.o\
event_flying.o\
exit_simulator.o\
explosion.o\
flamenormals.o \
get_curr_fps.o\
get_mouse_xy.o\
gnd_level.o\
gridwindows.o \
handle_tracking.o\
handlecontrols.o \
handlecontrols_fogm.o\
handlecontrols_partial.o \
highlitegrid.o \
init_months.o\
initialize_terrain_mat.o\
initiris.o\

initveh.o\
intanknormals.o \
jeepnormals.o\

letter.o\
light_model_initialize.o \
lightdefs.o\
limit_cursor_pick.o\
limit_value.o\
loadunit.o\
makeicons.o\
makepopups.o\
maketerrain.o \
mapoverlay.o\
missilenormals.o\
mousescreentoterrain.o \
mousescreentoworld.o\

mouseterraintoscreen.o \
mouseworldtoscreen.o\

mps.o

MPSOBIJS3 = network.o \

normalorient.o \
npoly_orient.o\
openjeepnormals.o\
placewindows.o \
placewindow_sizes.o\
popwindow.o\
positionwindows.o \
read_data.o\
reset_tiltf.o\

ring the_bell.o\
rollernormals.o \
select_an_area.o\
select_grid_square.o\
semaphore.o\
set_popup_color.o\
set_queue.o\
set_unqueue.o\
setcolor_initialize.o \
setcolor.o\
setcontrols.o\
setcontrols_fogm.o\
setcursorcolor.o\
setup_navwin.o\
setwindow.o\
setworldcoord.o \
sincos.o \

slowturn.o \
switch_veh.o\
tanknormals.o \
terrainnormals.o\
tirenormals.o\
tracknormals.o\
trucknormals.o \
tot_num_ground_veh.o\

100

- tot_num_veh.o\

h tracking check.o\
update_look_pos.o\
update_look_pos_fogm.o\
update_net_veh_pos.o\
update_veh_pos.o\
update_vehicle_grid.o \
upvehscreen.o\
vecdotp.o\
vecmag.o\
viewbounds.o \
zoomin.o

NETWORK_RECEIVEOBIS = semaphore.o \

network_receive.o

MPSHDRS = addnode.o \
addnode_net.o\
add_network_veh.o\
addveh.o\
arcsine.o\
billboard.o\
build_array.o\
build_array_net.o\
calcwindows.o \
center_string_map.o \
center_string_menu.o\
check_for_packets.o\
collision_detection.o\
compute_start_stop.o\
compute_sun_location.o \
compute_x_bounds.o\
compute_z_bounds.o\
define_cursors.o\
delete_veh.o\
display_big map.o\
display_indbox.o\
display_indbox_fogm.o\
display_intro_screen.o\
display_legend_for_big_map.o\

101

display_legend_for_navbox.o\
display_map.o\

display_nav.o\

display_slider.o\
display_tracked_message.o\
do_capture.o\

do_change_speed.o\

do_char.o\

do_driving_menu.o\

do_flying_menu.o\

do_intros.o\

do_main.o\

do_main_l.0\

do_main_2.0\

do_main_3.0\

do_main_4.0\

do_main_reset.0\

do_quitting.o\

do_resize.o\

do_select_area.o\

do_the_add.o\

do_the_defaults.o\

do_the_delete.o\

do_the_filename.o\

do_the_select.o\
draw_box_around_current_area.o\
drawgridbox.o\

drawterrain.o \

event.o\

event_driving.o\

event_flying.o\ '
exit_simulator.o\
explosion.o\
get_curr_fps.o\
get_mouse_xy.o\
gnd_level.o\
gridwindows.o \
handle_tracking.o\

102

handlecontrols.o \
handlecontrols_fogm.o\
handlecontrols_partial.o\
highlitegrid.o\

initiris.o \

initveh.o\

intank.o\
limit_cursor_pick.o\
makeicons.o\
makepopups.o\
maketerrain.o\
mapoverlay.o\
mousescreentoterrain.o \
mousescreentoworld.o \
mouseterraintoscreen.o\
mps.o\

network.o\
placewindows.o \
placewindow_sizes.o \
popwindow.o\
positionwindows.o\
read_data.o\
reset_tiltf.o\
select_an_area.o\
select_grid_square.o\
set_popup_color.o\
set_queue.o\
setcontrols.o\
setcontrols_fogm.o\
setup_navwin.o\
sincos.o\

slowturn.o \
switch_veh.o\
terrainnormals.o \
tracking_check.o\
tot_num_ground_veh.o\
tot_num_veh.o\
update_look_pos.o\

103 '

I)

update_look_pos_fogm.o\
update_net_veh_pos.o\
update_veh_pos.o\
update_vehicle_grid.o\
upvehscreen.o\
vecdotp.o\
viewbounds.o\
zoomin.o
POPUPHDRS = compute_start_stop.o\
do_change_speed.o\
do_driving_menu.o\
do_flying_menu.o\
do_intros.o\
do_main.o\
do_main_1.0\
do_main_2.0\
do_main_3.0\
do_main_4.0\
do_quitting.o\
do_the_add.o\
do_the_defaults.o\
do_the_delete.o \
do_the_select.o\
drawterrain.o\
event.o\
event_flying.o\
makepopups.o\
mps.o\
set_popup_color.o\
set_queue.o
COLORSCHEMEHDRS = display_indbox.o\
display_indbox_fogm.o\
display_intro_screen.o \ ‘
do_select_area.o\
drawterrain.o\
event.o\
mps.o\
network.o\

104 \

setcolor_initialize.o

FILEHDRS = display_big_map.o\

do_the_defaults.o\
maketerrain.o\
read_data.o

EVENTSTATUSHDRS = collision_detection.o\

do_driving_menu.o\
do_flying_menu.o\
do_main.o\
do_select_area.o\
do_the_select.o\
event.o\
event_driving.o\
event_flying.o\
handle_tracking.o\
set_queue.o

CONTROLSHDRS = do_change_speed.o\

drawterrain.o \

event.o\
handlecontrols.o \
handlecontrols_fogm.o\
handlecontrols_partial.o\
setcontrols.o \
setcontrols_fogm.o\
update_look_pos.o

LEGEND = display_legend_for_big_map.o\

display_legend_for_navbox.o

NETWORKHDRS = check_for_packets.o\

collision_detection.o \
do_change_speed.o\
do_flying_menu.o\

do_intros.o\

do_main.o\ !
event.o\

event_driving.o\

event_flying.o\

network.o\

network_receive.o\

105 \

tracking_check.o
LIGHTCONS = compute_sun_location.o\
drawintank.o \
drawflame.o\
drawjeep.o\
drawmissile.o\
drawopenjeep.o\
drawroller.o\
drawtank.o\
drawterrain.o \
drawtire.o\
drawtrack.o\
drawtruck.o\
drawwreck.o\
initialize_terrain_mat.o\
lightdefs.o\
mps.o
LIGHTDEFS = compute_sun_location.o\
lightdefs.o
INTANKDATA = mps.0
FLAMEDATA = mps.o
JEEPDATA = mps.0
OPENJEEPDATA = mps.o
MISSILEDATA= mps.o
ROLLERDATA = mps.o
TANKDATA = mps.o
TIREDATA = mps.o
TERRAIN = compute_start_stop.o\
drawterrain.o
TRACKDATA = mps.0
TRUCKDATA = mps.0

all: mps network_receive
network.o: network.c
cc -¢ network.c $(CFLAGSNET)

mps_module_1.0 : S(MPSOBJS1)
1d -r $MMPSOBJS1) -0 mps_module_l.0

106

| "

mps_module_2.0 : $(MPSOBJS2)
Id -r $MMPSOBJS2) -0 mps_module_2.0

mps_module_3.0 : $(MPSOBJS3)
1d -r $(MPSOBIJS3) -0 mps_module_3.0

mps: mps_module_1.0 mps_module_2.0 mps_module_3.0
cc -0 mps mps_module_1.0 mps_moduie_2.0 mps_module_3.0 $(CFLAGSLINK)

network_receive: SINETWORK _RECEIVEOBIJS)
cc -o network_receive S(INETWORK_RECEIVEOBIJS) $(CFLAGSNET)

mps.o: global.h

$(MPSHDRS): mps.h

$(POPUPHDRS): popups.h
$(COLORSCHEMEHDRS): color_scheme.h
$(FILEHDRS): files.h
$(EVENTSTATUSHDRS): event_status.h
$(CONTROLSHDRS): controls.h
$(LEGEND) : legend.h
$S(NETWORKHDRS): network.h
$(LIGHTCONS) : lightcons.h
$(LIGHTDEFS) : lightdefs.h
$(INTANKDATA) : intankdata.h
$(FLAMEDATA) : flamedata.h
SJEEPDATA) :jeepdata.h
$(OPENJEEPDATA) : openjeepdata.h
$(MISSILEDATA): missiledata.h
$(ROLLERDATA) : rollerdata.h
$(TANKDATA) : tankdata.h
$(TERRAINDATA) : terraindata.h
$(TIREKDATA) : tiredata.h i
$(TRACKDATA) : trackdata.h
$(TRUCKDATA) : truckdata.h

107

APPENDIX D PROCEDURE FOR ADDING ADDITIONAL PLATFORMS TO
MPS

Step 1: Using graph paper or any other means, locate all vertices of all polygons
that are needed to create the new platform. Use any world coordinate system that is
the most logical for the new platform. This is perhaps the hardest part of designing a

new platform.

Step 2: Using the development tool objs, insure that all polygons interconnected
correctly and create all polygon normals insuring that they are correct.

Step 3: Three files need to be created for the new platform. In this exarple we will
assume that we are designing a cobra helicopter. The three files that need to be creat-
ed are drawcobra.c, cobradata.h, and cobranormals.c.

Drawcobra.c contains the commands that actually draw the polygons. Each poly-

gon in the cobra helicopter needs commands similar to those in Figure D.1. These

/* Right front side panel */
n3f(pncobra39);
bgnpolygon();
v3f(pcobra39[0]);
v3f(pcobra39[1]);
v3f(pcobra39[2]);
v3f(pcobra39[3]);
endpolygon();

Figure D.1 Example Commands to Draw a Single Polygon For a Platform

sequence of commands draws ONE of the many polygons that make up the cobra. The

{

80bj is a tool that allows a collection of one or more polygons to be viewed from anywhere in
three dimensional space. It was instrumental in designing and updating platforms for lighting. Obj
was written by Mr. David Jennings at the same time he and CPT Mark Fichten were working on the
Moving Platform Simulator,

108

n3f() functions tells the system where the polygon’s normal is so that lighting can be
applied correctly. The bgnpolygon() and endpolygon() surround v3A) function calls
that define where the polygon’s vertices are. The number 39 in the example simply

means that this is the 39th polygon of the cobra and since four vertices were declared,
the polygon has four sides.

Cobradata.h is a header file that contains the declarations of the variables such as
pncobra39 from the above example. All these variables are initialized with the actual
points in space of the polygon in question. These points in space come from step one
above.

Cobranormals.c contains calls to the function normalorient() which returns a nor-
mal vector for the polygon in the direction of the light source. An interior point of the
polygon must also be passed into the function as a parameter.

After these three files are created, they are ready to be incorporated into the Mov-
ing Platform Simulator. Up to this point, no changes have been made to the actual sim-
ulator itself.

Step 4: Add the variable declarations for the cobra normals to the header file
global.h.

Step 5: Add the statement #include "cobradata.h" to the top of the file mps.c. This
gives the variable declarations in cobradata.h global visibility.

Step 6: Change the makefile to reflect the new platform. Copy and modify the defi-
nitions for an existing platform.

Step 7: Add all the appropriate manifest constants to the header file mps.h. Use
an existing platform to model the changes.

Step 8: Set up the lighting characteristics for the new platform by updating the
header files lightdefs.h and lightcons.h.

Step 9: Issue the command fgrep TANK *.c in the directory that MPS resides.
Changes must be made to all files that contain references to the TANK. Most of

109

these changes will require an addition to a switch statement. Some of the files that
will require changes include:

» build_array.c

* build_array_net.c

» define_cursors.c

» display_slider.c

e do_the_add.c

* do_the_defaults.c

* do_the_sclect.c

+ eventc

+ lightdefs.c

» makeicons.c

+ makepopups.c

* mps.c

¢ tot_num_ground_veh.c

* tot_num_veh.c

» tracking_check.c

+ update_net_veh_pos.c

» update_veh_pos.c

Siep 10: This completes the procedure to add a platform to the Moving Platform
Simulator. Good luck!

110

APPENDIX E TERRAIN DISPLAY DETAILS

Each grid square that is displayed in the Moving Platform Simulator is drawn as
two triangles. Each triangle is labeled with either an L for lower or U for upper, thus
denoting its location within the grid square. Also the vertices of each triangle are
numbered from zero to two in a counter-clockwise order. This is shown for each grid
square in the near group of Figure E.1.

Each grid square of the near group is displayed when the terrain is drawn. First
the coordinates of the lower triangular vertices are drawn, followed by the coordinates
of the upper triangle. No triangular filling is needed between rows or columns of grid

squares since every square is displayed, and none are grouped to form larger squares.

A. NORTH DISPLAY

When the viewer is looking north, the terrain is displayed moving from minimum
to maximum z, displaying rows of grid squares from minimum to maximum x. Figure
E.l1 shows a simplified view of how the grid squares are combined in each drawing
group. Four 100 x 100 meter grid squares are combined to form each large grid square
in the mid group. Each large grid square in the far group contains 16 100 x 100 meter
grid squares.

The appropriate coordinates of a vertex from the small grid square are sent to the
v3f() command in order to display the large triangles. For ¢xample if the current grid
square (x,z) is #1 in Figure E.1, the following coordinates are sent to display the
large lower triangle:

* (x,z) lower triangle vertex 0
» (x+1,z) lower triangle vertex 1
* (x,z+1) lower triangle vertex 2

The upper triangle is displayed after the lower triangle is drawn. The following

coordinates are used:

111

Grid Square # 2

(Grid Square # 1
Z

grid square
coordinate system

0

Offset Position

/ Far Group

Mid Group

<— Near Group

Figure E.1 Grid Square Display Looking North

112

o (x+1,z+1) upper triangle vertex 0
o (x,z+1) upper triangle vertex 1
o (x+1,z) upper triangle vertex 2

Table E.1 shows the vertex coordinates needed to display each triangle of the mid
and far groups. This table assumes the current grid square is #1 for the mid group and
#2 for the far group.

When grid squares are grouped together to form larger ones, holes may appear
between the groups. These holes are filled by drawing triangular regions where the
groups meet. Again using grid square #1 in the mid group and grid square #2 in the far
group, Table E.2 shows what vertices are needed to fill the gaps between groups.

B. SOUTH, EAST, AND WEST DISPLAYS

The procedure used for the north display is also used to display terrain while
viewing the other directions. Only the order and vertex numbers change. Figure E.2
shows the display groups while looking south, and Tables E.3 and E.4 give the appro-
priate vertices needed.

Figure E.3, Tables E.5 and E.6 summarize the east display. Figure E.4, Tables
E.7 and E.8 show the vertices to display the terrain while looking west.

113 .

TABLE E.1 VERTEX COORDINATES LOOKING NORTH

CURRENT GRID SOUARE # 1

LOWER LOWER LOWER UPPER UPPER UPPER
VERTEX VERTEX VERTEX VERTEX VERTEX VERTEX

0 1 2 0 1 2
X z xl z x zl x1 zl x z1 xl z
CURRENT GRID SOUARE # 2

LOWER LOWER LOWER UPPER UPPER UPPER
VERTEX VERTEX VERTEX VERTEX VERTEX VERTEX

Q 1 2 0 1 2
X z x3 z x z3 x3 z3 x z3 x3 z
xl=x+1
x3=x+3
zl=z+1

23=z+3

114 |

- TABLE E2 VERTEX COORDINATES FOR FILLING HOLES LOOKING

NORTH
CURRENT GRID SOUARE #1
VERTEX VERTEX VERTEX
0 1 2
xzL vertex O xzL vertex 1 x1 zL vertex 1

CURRENT GRID ARE #2

YERTEX YERTEX YERTEX
0 1 p
x zL vertex 0 x1 zL vertex 1 x3zL vertex 1
xl=x+1
x3=x+3

L = lower triangle

115

Offset Position

Near Group
L L 0L ()L
OIN\1 0
o\’ \J v
L L
2] 2
0 0 1 \
1 0
MidGroup
Grid Square #1 U \
Grid Square # 2 L Far Group
Z 2
0 1
. X
grid square

coordinate system -

Figure E.2 Grid Square Display Looking South

116

TABLE E.3 VERTEX COORDINATES LOOKING SOUTH

CURRENT GRID SOUARE # |

LOWER LOWER LOWER UPPER UPPER UPPER
VERTEX VERTEX VERTEX VERTEX VERTEX VERTEX

0 1 2 0 1 2

x zml x1 zml X z xl z Xz x1 zm1l

RID #

LOWER LOWER LOWER UPPER UPPER UPPER
VERTEX VERTEX VERTEX VERTEX VERTEX VERTEX

0 1 2 0 1 2
x zm3 x3 zm3 X z x3 z X z x3 zm3
xl=x+1
x3=x+3
zml=2-1 :
zm3=2z-3

117 |

A

TABLE E.4 VERTEX COORDINATES FOR FILLING HOLES LOOKING
SOUTH

CURRENT GRID SQUARE # 1

VERTEX VERTEX VERTEX
0 1 2
xzUvertex 1 xz Uvertex 0 x1 z U vertex 0
CURRENT GRID SOUARE # 2
VERTEX YERTEX VERTEX
0 1 2
xzUvertex 1 x1 zU vertex 0 x3 zU vertex 0
xl=x+1
x3=x+3

U = upper triangle

118 '

Near Group MidGroup

Far Group
1 0 1 0
N U \J?
Offset Position L U
2
oL N0 1
1 0 L
L 2 U
L 2
L 2 0 \ 1
Z
Grid Square #1 Grid Square # 2
, X
grid square

coordinate system

Figure E.3 Grid Square Display Looking East

119

TABLE E.5

VERTEX COORDINATES LOOKING EAST

0

Q

xl=x+1
zl=z+1
x3=x+3

z23=2z+3

LOWER LOWER LOWER UPPER UPPER UPPER
YERTEX YERTEX VERTEX VERTEX YERTEX VERTEX

1

xl z

LOWER LOWER LOWER UPPER UPPER UPPER
YERTEX VERTEX VERTEX VERTEX VERTEX = VERTEX

1

X3 z

CURRENT GRID SQUARE # 1

2 0 1 2

x zl x1 zl x zl x1 z

CURRENT GRID SQUARE # 2

2 0 1 2

x 23 x3 23 X z3 x3 z

120 *«

TABLE E.6 VERTEX COORDINATES FOR FILLING HOLES LOOKING

EAST
NT GR #
YERTEX YERTEX YERTEX
0 1 2
x zL vertex 0 x z L vertex 2 x z1 L vertex 2
NT ARE #
VERTEX VERTEX VERTEX
0 1 2
xz L vertex 0 x z1 L vertex 2 x 23 L vertex 2
zl=z+1
z23=z+3 |
L = lower triangle

121 '

Far Group Mid Group Near Group
1 0 1 0 Uo
2
2 AN
U L
2
0 Nl
L 1 0
SANEAN
2 L Offset Position
0 2} L
L \¥0 1\10
Z Grid Square # 2 Grid Square #1
. X
grid square
coordinate system

Figure E.4 Grid Square Display Looking West

L
m)

TABLE E.7 VERTEX COORDINATES LOOKING WEST

CURRENT GRID SOUARE # 1
LOWER LOWER LOWER UPPER UPPER UPPER
VERTEX VERTEX VERTEX VERTEX VERTEX VERTEX
0 1 2 0 1 2
xml z X z xml zl x zl xml zl X2z
CURRENT GRID SOUARE #2
'LOWER LOWER LOWER UPPER UPPER UPPER
VERTEX VERTEX VERTEX YERTEX VERTEX YERTEX
0 1 2 0 1 2
xm3 z X z xm3 z3 X 23 xund z3 Xz
xml=x-1
xm3=x-3
zl=z+1
23=2+3 !
123

TABLE E8 VERTEX COORDINATES FOR FILLING PFOLES LOOKING
WEST

CURRENT GRID SQUARE # 1

VERTEX VERTEX VERTEX
0 1 2
x z U vertex 2 x zU vertex 0 x z1 U vertex 0

CURRENT GRID SQUARE # 2

VERTEX VERTEX VERTEX
0 1 2
x z U vertex 2 x z1 U vertex 0 x z3 U vertex 0
zl=z+1
z3=z+3 !

U = upper triangle

124

10.
11.

12.

13.

LIST OF REFERENCES

Blau, Ricki, and others, Panel session on “What Can We Learn by Benchmark-
ing Graphics Systems?,” Computer Graphics, SIGGRAPH 1988 Conference Pro-
ceedings, v. 22, no. 4, August 1988.

Akeley, Kurt and Jermoluk, Tom, “High-Performance Polygon Rendering,” Com-
puter Graphics, SIGGRAPH 1988 Conference Proceedings, v. 22, no. 4, August
1988.

Ardent Computer Corporation, Ardent Computer Corporation Titan Specifica-
tions, San Jose, California, 1988.

Apgar, Brian, Bersack, Bret and Mammen, Abraham, “A Display System for the
Stellar™ Graphics Supercomputer Model GS1000™,” Computer Graphics, SIG-
GRAPH 1988 Conference Proceedings, v. 22, no. 4, August 1988.

Smith, Douglas B., and Streyle, Dale G., An Inexpensive Real-Time Interactive
Three-Dimensional Flight Simulation System, M.S. Thesis, Naval Postgraduate
School, Monterey, California, June 1987.

Oliver, Michael R., and Stahl, David J., Interactive, Networked, Moving Plat-
form Simulators, M.S. Thesis, Naval Postgraduate School, Monterey, California,
December 1987.

Silicon Graphics Inc., IRIS User's Guide, MEX Window Manager, Mountain
View, California, 1987.

Silicon Graphics Inc., 4Sight User’s Guide, v. 1, Mountain View, California, 1988.

Hearn, Donald and Baker, M. Pauline, Computer Graphics, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1986.

Silicon Graphics Inc., IRIS User’s Guide, v. 1, Mountain View, California, 1987.

McConkle, Corinne and Nelson, Andrew H., A Prototype Simulation System for
Combat Vehicle Coordination and Motion Visualization, M.S. Thesis, Naval
Postgraduate School, Monterey, California, June 1988.

Silicon Graphics Inc., IRIS GTX: A Technical Report, Mountain View, California,
1988.

Silicon Graphics Inc., Power Series A Family Overview, Mountain View, Califor-
nia, September 1988.

125

. im i\ A

Distribution List for Dr. Michael J. Zyda

Defense Technical Information Center,
Cameron Station,
Alexandria, VA 22314 2 copies

Library, Code 0142
Naval Postgraduate School,
Monterey, CA 93943 2 copies

Center for Naval Analyses,
4401 Ford Avenue
Alexandria, VA 22302-0268 1 copy

Director of Research Administration,

Code 012,

Naval Postgraduate School,

Monterey, CA 93943 1 copy

Dr. Michael J. Zyda

Naval Postgraduate School,

Code 52, Dept. of Computer Science

Monterey, California 93943-5100 200 copies

Mr. Bill West,

HQ, USACDEC,

Attention: ATEC-D,

Fort Ord, California 93941 1 copy

John Maynard,

Naval Ocean Systems Center,

Code 402,

San Diego, California 92152 1 copy

Duane Gomez,

Naval Ocean Systems Center, !
Code 433,

San Diego, California 92152 1 copy

James R. Louder,

Naval Underwater Systems Center,

Combat Control Systems Department,

Building 1171/1,

Newport, Rhode Island 02841 1 copy

126

